GUIDE
SHARE

EUROPE
UK REGION

GSE UK Conference 2018 S
Better, stronger, faster; The Mainframe..... the Machine! ‘

Agile Applications using a
Microservices approach. 5th November 2018

Ian J Mitchell, IBM DE S ion: GB
Application Agility Architect ession:

[=] L& [m]

-

Agenda

« Understanding the Opportunity
« Seeing is Believing

« Learning from Experience

IBM Z / © 2018 IBM Corporation

Stakeholders

Understanding
the Opportunity

So, you want to respond to business
requirements more quickly? —_———

Ed > RS ¢ z ¥ 0@

s B3 Internal Communities B CICS https://www.ibm.co.. [BS News

« The services you provide are not seen as transforming to Microservices for

meet new business needs fast enough. fast time to
market and

improved app
quality

* Your existing application structure means it takes too
long and carries too much risk to change fast.

Take a cloud-native approach to building
mobile and web applications with a
microservices architecture.

* Your development process imposes unacceptable delays.

< Architecture Center

M . . 4,:‘ Microservices &6 Clients are trying to modernize their applications to keep
* Yourteams are not accepting of agile practises and are R arehtecture
. .) how applications were written... people spent years writing
not al.lgn ed Or em pOWered to keep ahead Of bUS| neSS Overview monolithic applications in which a lot of application function
’ was packaged inside the app... now they are seeing the
n e e d S Reference architecture difficulty developers are having in adding new features to

respond to changing marketing demand. L1

QJ Get code

Microservices with Temamemiin diman +a mamelead saiidhy

Roland Barcia, Distinguished Engineer and CTO: Microservices

You've heard from companies which "need greater agility and scalability" are using Microservices to achieve
"fast time to market and improved app quality” by using them to "prioritize the continuous delivery of single-
purpose services".

IBM Z / © 2018 IBM Corporation 6

But no one believes that

your mainframe culture

can be agile enough

to match this competition.

Definition:

LN [What are microservices? X

& &8 (O microservices.io h*e
Apps B Work Tools

Bookmarks Home - CICS for z/O.

[ES First Direct

What...

Microservices is an architectural style that
structures an application as a collection of loosely
coupled services, which implement business
capabilities.

The microservice architecture enables the
continuous delivery/deployment of large, compld
applications.

It also enables an organization to evolve its
technology stack.

From Chris Richardson (Microservice.io)

IBM Z / © 2018 IBM Corporation

Microservice Architecture
Supported by Kong

Patterns Articles Presentations Resources Assessment Platform new Other Languages About

What are microservices?

Microservices - also known as the microservice architecture - is an architectural style that structures an application as a collection of
loosely coupled services, which implement business capabilities. The microservice architecture enables the continuous
delivery/deployment of large, complex applications. It also enables an organization to evolve its technology stack.

Microservices are not a silver bullet

The microservice architecture is not a silver bullet. It has several drawbacks. Moreover, when using this architecture there are numerous
issues that you must address. The microservice architecture pattern language is a collection of patterns for applying the microservice
architecture. It has two goals:

1. The pattern language enables you to decide whether microservices are a good fit for your application.
2. The pattern language enables you to use the microservice architecture successfully.

Where to start?

A good starting point is the Monolithic Architecture pattern, which is the traditional architectural style that is still a good choice for many
applications. It does, however, have numerous limitations and issues and so a better choice for large/complex applications is the
Microservice architecture pattern.

http://microservices.io/

Definition:

* Microservices for fast timeto - x \ = §

& (€l & Secure | https://www.ibm.com/cl e/ t/architect srvices/ e 2HEEezT¥OB, 4,%AS
ii Apps Bookmarks Home - CICS for z/O... [First Direct B8 Work Tools [External Communities [Internal Communities B CICS https://www.ibm.co.. B News [F CICS-L List

Microservices for | N Why .
fast time to NG
market and =~ i For to market and

impr_oved app = = e (IBM Cloud Garage Method).
quality i |

robie and webapplcatons w2 = == To prioritize the of single-
purpose services. Becoming popular with

© ettt coter companies that need

s S (Pivotal).

how applications were written... people spent years writing

Overview % monolithic applications in which a lot of application function
’ was packaged inside the app... now they are seeing the

Reference architecture difficulty developers are having in adding new features to ! balan(ﬂ ng Speed and Safety at Scale."

respond to changing marketing demand. L
d Get code

Microservices with
£

Roland Barcia, Distinguished Engineer and CTO: Microservices

From Chris Richardson (Microservice.io)

IBM Z / © 2018 IBM Corporation

http://microservices.io/
https://www.ibm.com/cloud/garage/content/architecture/microservices/
https://pivotal.io/microservices

You need more knowledge about microservices:
Thoughtworks

Microservices Cloud IoT Security Transformation Experience Design Retail Career Hacks |AI|T0pics(26)

MICROSERVICES

Microservices: using Microservices Macro trends in the
resources and architecture: flexibility tech industry
business services as for omni-channel

extensibility strategy retailers

“Organizations which design systems
are constrained to produce designs
which are copies of the communication
structures of these organizations”

- Conway, 1967

Adopting a digital
platform strategy: an
The New Tech Industry Applying Conway's Law iterative approach

Mac ‘o Trends to improve your
software development

18M2/® 2018 18M Corporation https://www.thoughtworks.com/insights/microservices ™

You need to understand when to adopt Microservices:
the Microservices Premium

https://martinfowler.com/articles/microservices.html https://martinfowler.com/bliki/MicroservicePremium.html
Contents for less-complex systems, the extra
Characteristics of a Microservice Architecture baggage required to manage
Componentization via Services microservices reduces productivity

Organized around Business Capabilities
Products not Projects
Smart endpoints and dumb pipes
Decentralized Governance
Decentralized Data Management
Infrastructure Automation
Design for failure
Evolutionary Design

Are Microservices the Future? =

Sidebars

How big is a microservice?
Microservices and SOA

Many languages, many options .
Battle-tested standards and enforced standards Productivity
Make it easy to do the right thing

The circuit breaker and production ready code

Synchronous calls considered harmful Monolith

as complexity kicks in,

productivity starts falling

rapidly

the decreased coupling of
microservices reduces the
attenuation of productivity

Microservice

Base Complexity

but remember the skill of the team will
IBMZ / © 2018 IBM Corporation outweigh any monolith/microservice choice 12

When to adopt Microservices:
the Microservices Premium (Martin Fowler)

https://martinfowler.com/articles/microservices.html https://martinfowler.com/bliki/MicroservicePremium.html
Contents for less-complex systems, the extra
Characteristics of a Microservice Architecture baggage required to manage
Componentization via Services microservices reduces productivity
Organized around Business Capabilities
Products not Projects /

Smart endpoints and du~* ~i=~n

Fosadiriet ot ...primary guideline would be don't even consider
Deson for faare e microservices unless you have a system that's too the decreased coupling of

Evolutionary Design

Are Microservices the Futu Complex to manage as a monolith. The majority of software mcroservices reduces the
Sidebars attenuation of productivity
systems should be built as a single monolithic application.

How big is a microservice?

microsenices and SOA Do pay attention to good modularity within that monolith,

Many languages, many opi

! | e .
e e darae an but don't try to separate it into separate services. e
The circuit breaker and production ready code ‘&

Synchronous calls considered harmful

—

Base Complexity

but remember the skill of the team will
IBMZ / © 2018 IBM Corporation outweigh any monolith/microservice choice 13

Common misconceptions about microservices

14

Core pillars (“dimensions of disruption!”)

/ \
RS

Publically available material (typically publicized via https://developer.ibm.com/integration/blog)

Hybrid Integration Reference
Architecture

API| & Event Gatewa

“Low level” connectivity

webinar (45 mins)

article (~15 pages)

http://ibm.biz/HybridIntRefArch http://ibm.biz/HybridIntRefArchYouTube

Moving from ESB to agile integration architecture

Extomaly Exposed Services/APls

gee o leere

(TR L LA

B e
|...- l...-

moving to agile integration architecture posts and articles
http://ibm.biz/AgileIntegArchLinks

—_—-

"em

http://ibm.biz/AgileIntegArchPaper

Microservices vs SOA

SOA relates to entergris_e Service exposure * >

Application

Application Application

Microservices relate to
application architecture

short blog post http://ibm.biz/MicroservicesVsSoaBlog,
video (10 mins) http://ibm.biz/MicroservicesVsSoaVideoShort
paper (~15 pages) http://ibm.biz/MicroservicesVsSoa
webinar (55 mins) http://ibm.biz/MicroservicesVsSoaFullWebinar

Microservices and messaging

API Gateway

Microservices application

hAi]

G o= o

webninar (20 mins)
http://ibm.biz/MicroservicesAndMessagingWebinar

Note: The importance and positioning of API management is discussed in all of the above

17

http://ibm.biz/MicroservicesVsSoaBlog
http://ibm.biz/MicroservicesVsSoaVideoShort
http://ibm.biz/MicroservicesVsSoa
http://ibm.biz/MicroservicesVsSoaFullWebinar
http://ibm.biz/HybridIntRefArch
http://ibm.biz/MicroservicesAndMessagingWebinar
http://ibm.biz/AgileIntegArchLinks
http://ibm.biz/HybridIntRefArchYouTube
https://developer.ibm.com/integration/blog
http://ibm.biz/AgileIntegArchPaper

What is microservices architecture?

Monolithic Application

oL
R v/ i 7
i Silo O

IBM Z / © 2018 IBM Corporation

A set of principles that
guide the breaking down
of large components into
smaller, more self
contained ones enabling
greater agility, more
elastic scalability and and
more differential
resilience.

[

I

I

I

I

I

I

I

I

I
Fundamental principles I
include maximizing I
isolation and decoupling |
between components |
(including their data), |
making components as |
stateless as possible and |
avoiding affinities. :
I

I

I

\

Supporting requirements
include fully automated
DevOps pipelines and
good automated test
coverasge.

Microservices Application

Microservice
component

-
-
BN

Microservice comp

Microservice comp

Putting Microservices in context

IBM Z/© 2018 IBM Corporation

20

IBM Z / © 2018 IBM Corporation

An

Microservices =

Microservices demand

means the service can be consumed and managed more easily.

21

Microservices = + DevOps

Microservices demand a combination of and DevOps

A fast and reliable DevOps cycle means the service can continue to meet the
business needs whilst maintaining high quality of delivered production instances.

IBM Z / © 2018 IBM Corporation 22

Microservices = (+ DevOps) x Innovation

Microservices demand a combination of and DevOps
where Innovation is rewarded.

Business need for Innovative use of the services drives the demand.

IBM Z / © 2018 IBM Corporation

23

Microservices = (+ DevOps) x Innovation x Agile Culture

Microservices demand a combination of and DevOps
where Innovation is rewarded within an Agile Culture.

Without an agile culture the services will quickly go stale.

Our chief weapon is surprise...surprise and fear...fear and surprise.... Our two weapons are fear and surprise...and ruthless efficiency.... Our
three weapons are fear, surprise, and ruthless efficiency...and an almost fanatical devotion to the Pope.... Our *four*...no... *Amongst* our
weapons.... Amongst our weaponry...are such elements as fear, surprise....

IBM Z / © 2018 IBM Corporation

24

Questions

Time for questions to refine that objective:

* Does your organisation have APIs?

« Does you organisation have Microservices?

* Do you believe Microservices and APIs are the same?

* Are Microservices a cloud-only architecture?

* Areyou creating, services, APIs or both?

* Does this impact your business?

* How does this impact your business? Speed/Scale/Quality/other

» Isthis natural for your organisation now? eg Fowler - products not projects.
« What (who?) are the inhibitors which will make this difficult?

« Canyou initiate the necessary changes?

IBM Z / © 2018 IBM Corporation 26

Seeing is believing

Organizations Are Adopting a Multi-Cloud Strategy

+

Getting new value from Extracting value from
third parties your entire business

Do you have a multi cloud strategy. Who are your vendors?

IBM Z / © 2018 IBM Corporation

28

Evolution of how workloads
are built & delivered

Micro Services

IBM Z/ © 2018 IBM Corporation

Continuous
Integration &
Delivery

Wk
WA

Containers

By 2018,

Over 60% of New Apps will use
cloud-enabled

architectures to enable faster
innovation and business agility.

(IDC Prediction)

Do you have a PAAS strategy?

Does your company use containers and orchestration
tech? which? Are you doing cloud native? 2

Key Use Cases Driving “Private Cloud” Adoption

1 2 3

Create new Modernize and optimize Opening up enterprise
cloud-native existing applications data centers to work
applications with cloud services

Multi-cloud management and orchestration

Solution Overview — IBM Cloud Private

... to enable enterprises to both innovate & optimize

Enterprise Content Catalog O
Open Source and IBM Middleware, Data, Analytics, @ Ie
and AI Software EpS
a Core Operational Services _
! Log Management, Monitoring, Security, Alerting

Kubernetes Container @
Orchestration Platform

kubernetes docker
Choose your vmware n @ IBM Spectrum Y.
infrastructure: intel) openstack ’o\ s)
L/ Power IBMZ

Systems

What workloads in production you run on containers if any?

IBM Z / © 2018 IBM Corporation

Are you already using another vendor here? (openshift, docker EE etc)

Strategic Value:

Self-service catalog

Agility, scalability, and
elasticity

Self-healing
Enterprise security

No vendor lock-in

Introducing IBM Cloud Private on Z

Benefits on Z Adoption Patterns
l- ————————————————— -
I IBM Cloud Private | L. L.
* Modernization and Digital | I * Application Modernization
Transformation Speed. I iizlgzsellizet'?::fivcv:sre’ | with IBM Middleware and
_ . I : Container content.
* ngheSt I'evels Of Securlty | Core Operational Services : .
. | (security, logging, monitoring etc) | ° Digital Transformation with
* Only private cloud I I Z/0S*
offering that can support | vMBased | _
IBM Z ! ey oniars " Vordeis |\« Cloud Native Services with
I Containers docker| LS 22 /! Hyper Protect Containers and

Runtimes

Management and
Compliance

Enterprise grade Open by desigh Secured by IBM Z

IBM Z / © 2018 IBM Corporation 32

Rapid Differentiated Investment
Innovation Integration Leverage

LinuxONE: Scalable, highly-available and secure private cloud

Compose high-performance scalable applications. Dynamically and seamlessly re-allocate
resources. Provide right-time analytics and powerful engagement

Extreme Virtualization and Scale

ICp master on
Intel/Power

1k Linux guests/hypervisor

85 EAL5+ zVM/KVM per box
+2 million docker containers
17TB Mongo instance
Hypervisor communication via fast, in-memory
TCP/IP Hipersockets or Shared-OSA

5x less latency than discrete servers
Massive dedicated I/O

640 Power co-processors

3GB combined cache, 5Ghz CPUs, crypto
acceleration

Security

Linux guest

Combine scale-up and scale-out
Non-disruptively add/remove resources from
Linux guests

Non-disruptively add/remove Linux guests

scale-up

CPs/mem/10/hypersockets

|

|

|

I Super Elastic System
I .

I

Linux'on Z/LinuxONE

scale-out

IBM Z / © 2018 IBM Corporation 33

Digital Transformation Inclusive of z/0S

IBM Z as a differentiating asset in ICP from services that span z/0S, Linux on Z, private and public cloud
= Cloud consumption for z/OS (DBz-aaS, WASz-aaS, MQ-aaS, CICS-aaS etc)

= DevOps, microservices and application life-cycle management for zOS @

ICp bundle for /0S IBM Cloud private (ICp) master
(x86/Powe

. er APIS
= = = — Open Service Brok

[I . » |
. .) I I SERT servi servi
I cics/ 2/0s service service 3 :erwce service ce == o I
bB2 IMS Connect I I I I I
ICp ICp ICp I
| L s S | ey | I
sosns | ! !
I VMWare I
R -. - .
| | Public Cloud
CPs/mem/I10/hipersockets I | Intel/Power . |

(On-prem) |

IBMZ/©2018 IBM ColfiSPl,, NN EEEN = E——

34

The May GMAC asked for a consolidated view of the
current state of agile application projects across
Fiducia /GAD, ADP, and American Express as sponsor
clients.

Workshops were conducted across multiple clients
with the aim to understand working approaches to
application agility on the Z platform and distill
practical guidance which can be published to the
client community.

Learning
from

By exploring this topic in this way, IBM will be better
able to make recommendations and supply the right
tools to improve the developers’ user experience and
the enterprise’s agility on the Z platform.

Experience

IBM Z / © 2018 IBM Corporation

What we heard

What’s working...

“We can do things quickly!”

IBM Z / © 2018 IBM Corporation

Some example of different development models

Examples of fast production deployments in 2
week sprints (or faster) do exist.

Agile “whole” team practices assisted by
organizational adjustments. “The Band-Aid was

ripped off”

Semi-automated deployment pipelines

Skills are mixing across Z and the enterprise
Examples of Ops in scrum team

Teams owning a product for full lifecycle

Global “production like” test environments exist

Access to Dev-Test pricing containers barriers to
development testing.

APT’s are prolific

Pain Points & Gaps

IBM Z / © 2018 IBM Corporation

Tooling inconsistent and unfamiliar across the enterprise

Parallel development restricted by not using incumbent
tooling

Lack of interlock between development and operations
team

Uncertainty in change quality leading to risk aversion
Uncertainty on the cost impact of changes
Limited knowledge of production impact by developers.

Impact of deployments to operations unclear

Minimal automated testing, consistent testing
environments, access to stable testing environments for
both applications and data

Minimal access to new technology when they want it

Continuity of support for deployed applications

Insights

B®M Z / © 2018 IBM Corporation

Organization

Break down traditional
boundaries and unite the
teams across platforms

Get everyone involved Cross training One team Align organization to

) , _ products
Identify a champion to Teach Mainframe All squads have both
lead the change folks Java and Mainframe and Reorganize the
Involve all personas in Container skKills. Distributed skills on organization to align
all phases of e the team with Products instead
development Teach Distributed of projects with a one
folks COBOL and team approach

Mainframe skills

40

Testing

Code, build, release and deploy

with confidence

For developers

We need private
environments for Unit
Test, with FAST
turnaround in the edit,
compile, and debug
cycle.

Fed by data

An efficient supply of
high quality,
anonymized data is
essential for effective
automated testing.

Automated

We have too many
people running tests
when they should be
designing and
Implementing
automated tests.

et
W . py
RO

. o vo o) -ﬁ’*\ :
ot o.»-.w':'.'.’.z =

W .
\ [|

PRty T o
b ~ y »
p = o
T \“j 5

Repeatable

Regression testing is
essential to build
confidence that cycle-
times can be reduced.

Release Pipeline

A common release pipeline
using open source on all
platforms.

Common pipeline Open source Automate everything Frequent

One pipeline and Use open source tools Minimize the need for Squads need frequent

practices for to build that pipeline. manual steps through feedback from

mainframe and Aspiration that release automation. Everyone working code which

distributed. pipeline open source Is using the same requires frequent
packages run on the automation for build, quality builds
mainframe. test, and deployment.

42

terms/"

/pet/{pet1d} Deletesapet

/pet/{pet1d}/uploadInage uploads an image

3
i "api:
S []
a I l Ses, -2.0.html"
e a C O I I I I . store Access to Petstore orders
- tore/inventory Retuns pelinveniries by siaus
5 rder Place an or
I

Realizing the value of current

assets and ensuring it endures i ———

Consumability Decomposition Evolution Curating

APIs are the face of Modeling and A more fine grained Today’s monoliths are
your service. exposing a monolith set of assets is faster difficult to evolve and

Designing APIs which via API is the first step and easier to tools are needed. Eg.
delight the to modernize it. change/version, test measuring and

developer/consumer Decomposing enables and deploy. eliminating dead code

unlocks innovation. the asset to align with and its overheads.
the new organization.

43

Runtimes

Freedom to put any content on
the platform

Don’t replace Exploit platform Developer self service Freedom to run

. isolation : :
Instead of rebuilding Allow developers to Write workloads in a

everything on Run applications in allocate and create platform agnostic
mainframe be isolation with containers with manner and create a
strategic and rewrite middleware, data, and middleware and governance model to
In a platform agnostic monitoring. anonymize test data determine run

way platform

44

Next steps

Common Practice

Good enough?

Test| N g . Too manual, cumbersome to provision, labor-intensive, non-repeatable, often neglected, too expensive...

Pipeline Proprietary and bespoke

Inflexible SCM, bespoke/homegrown automation, manually driven, ...

APIs and API exposure of existing applications

Manual identification or historical knowledge

Refacto ri N g » Refactoring of “edges” to API enable

Containers Some container like characteristics:
Isolation, WLM, Security

Multiple languages: COBOL, PLI, Java, Node.|s
Missing packaging and standardization and deployment

46

Possible Practice

Testing

Quickly and reliably provision isolated and representative test environments with
apps and data

Pipeline

APIs and

Refactoring

Automated pipeline GIT/RTC, Jenkins, DBB allowing parallel development

Identification of API candidates, business rule discovery and source identification
for refactoring or extending (in new languages)
Code coverage, dead code identification

Containers

Full standard experience on Linux on Z

Platform agnostic workloads with Java and Node.js (LoZ and zOS)

47

Future Practice

Testing

Auto provisioned, monitored, integrated end to end, validated quality gates

governing pipeline.

Pipeline

APIs and

Refactoring

For developers “one click” provision and deploy
Integrate opensource pipeline tools

Developers understanding the impact of app changes before deployment
Developer experience consistent across the whole enterprise

Containers

What’s next for zOS?

48

\

IBM Z /© 2018 IBM Corporation

Align teams including cross organization
members: development, operations,
cloud, mainframe...

Implement possible practices in your
shop today

Refine future roadmap with sponsor-
USers across:

Testing
Release Pipeline
APIs and Refactoring

Runtimes

Our landscape:

Coherency of experience

IBM Z / © 2018 IBM Corporation

repositories

IBM Cloud UX

Analytics and
reporting

Middleware Application
and process integration

services

Data
integration and
govemance

New apps

—JJJ

images

service
mgmt

containers

0S & HW

51

Our landscape:

Coherency of experience

IBM Z / © 2018 IBM Corporation

IBM Cloud UX

Analyicsand ~ Middleware Application New apps
repositories reporting and process integration integration and
services govemance

—JJ_J

images

service
mgmt

containers

0S & HW

52

Our landscape:
Coherency of experience

CLI & Web UI IBM Cloud UX

Custom Analyfcsand ~ Middleware Application Data New apps
app repositories reporting andprocess integration integration and images
services govemnance
—_
service
mgmt
] containers
0OS & HW
53

Our landscape:
Coherency of experience

CLI & Web UI | IBM Cloud UX I

(Helm) . .
DT ___browse . Repository %b Running Service T
Install access

Application

repositories reporung Il IVEDD INEgrauon INIEYIEUoN anu _____- images
services govemance

L
service
mgmt

] containers
0S & HW

54

Our landscape:
Coherency of experience

’"IBM Cloud Private - ~

| CLI & Web Ul €)> C @ ® & https://10.0.0.1:8443/console/ . I'OUd ux

s }

IBM Cloud Private

Dashboard

; Use C
Service TG Application

access

Ty ey | | imeges

Dashboard

dlion anu
nance

System Overview

Nodes 1

On-Prem Cloud

~
5 1 Active .
100* service
Active 0 Inactive m gmt
Shared Storage 42GiB
08 Available containers
Q 42GiB Used
0S & HW
55

Our landscape:
Coherency of experience

CLI & Web UI [_

X IBM Cloud Private

(Helm) Dashboard Filter 3&
el . .
Dashboard —brovise . — Application
Repository - Catalog {
Show repositories: P
[Helm Charts| [] ibm-charts images
Bluecompute Application Chart
v
Images |. ibmcase .
ibmcase
[] 1ocal-chart- —
» Workloads | e
 ——
Network Access
VERSION 005 ~ service
Configuration mgmt
PUBLISHED Feb 14th 2018
Platform TYPE Helm Chart
Manage
containers
Command Line Tools
0S & HW
56

Our landscape:
Coherency of experience

CLI & Web UI | IBM Cloud UX I

(Helm) . .
Dashboard —Lbrowse sl %b Running Service URL 10
Install = ~— access

Ty ey | | imeges

Application

DEPLOYMENT

NAME DESIRED CURRENT UP-TO-DATE AVAILABLE A

service
mgmt

bluecompute-ce-ordersdb-mysaql
bluecompute-ce-orders
bluecompute-ce-web

containers

0OS & HW
57

1
1
1
1
1
1
1
1
1
1

§23%%353%8 % 3%

I__._._._.__._._._.

1

1

1

1

1

bluacompute-ce-inventorydb-mysagl 1
1

1

1

1

Our landscape:
Coherency of experience

CLI & Web UI | IBM Cloud UX I

(Helm) . ,
Dashboard - browse | . _select/_I Running Service Application
Repository Config/ g URL to PP
Install = ~— access
T S | | images
Service details
—

Type Detail UP-TO-DATE AVAILABLE AGE

Name bluecompute-ce-web 1 1 6m)

Namespace default ! Bm service

1 6m mgmt

Creation time Feb 20th 2018 at 9:13 AM ; =

Type NodePort 1 8m

Labels app=bluecompute,chart=web-0.3.0,micro=web-bff,release=bluecompute-ce,tier=frontend 1 6m

Selector app=bluecompute,micro=web-bff,tier=frontend ! o .

1 6m containers

1P 10.1.0.155 —

Port http 80/TCP &m
[Node port http 31337/7CP |

Session affinity None

0OS & HW
58

Our landscape:
Coherency of experience

CLI & Web UI | IBM Cloud UX I

Dashboard - browse | (Helm) _select/_I Running Service
Repository Config/

URL 10 Application

Install access — —

repositones reporung AN PG IEgELON INIEYIEUN im ages
services govemance

IBM Cloud Architecture Home

Catalog

rvice
3mt
BLUECOMPUTE
STORE! ntainers

CHECK OUR AWESOME COLLECTIONS!

HOSTED IN CLUSTER "MYCLUSTER" IN REGION
"MYREGION"

BROWSE ITEM CATALOG > & l::N

IBM Cloud

Tutorial

Architecture

IBM Z / © 2018 IBM Corporation

OMNI CHANNEL CLOUD NETWORK
CLIENTS & PUBLIC BLUEMIX
NETWORK

IBM BLUEMIX CONTAINTERS SERVICE- KUBERNETES CLUSTER

KUBERNETES
FRONTEND
SERVICES

B Application component
Bl Infrastructure services
Il Data store

Il Security

-
| 1 1 1
! 1 | 1
! 1 | 1
| 1 1 1
| 1 1
1
| INGRESS | | I KUBEDNS
| CONTROLLER | . 1 |
I 1 1 : |
1 | . ! |
I L Lo
1 |)
BROWSER 1 1 | AUTHENTICATION | I . CATALOG
1 | , AUTHORIZATION 1 , | Mmicroservices
| 1 | :)
I L L
> , puBuc ! R X 1
— 7 ROUTE T 71 X 1
! 1
1 1
GLOBAL LOAD 1 | 1 CUSTOMER
1 1
BALANCER 1 | X - 1 . MICROSERVICES
AKAMAI
! ! 1 BFF (Node.js) ! I
1 | . : .
| 1 | | |
1 | . |
DEVICE 1 I | ! I ORDER
! 1 | ! 1 | micRroseRrvices
I L Lo
1
I . ! MOBILE . ! |
) ! BFF (Swift) . ! |
: 1 | ! g —
1 I .
1 | . 1 . INVENTORY
LEGEND 1 | . 1 | MICROSERVICES
Bl User 1 1 . 1 .
I 1 1 1 |
1 1

I
! SERVICES

KUBERNETES
BACKEND

BLUEMIX
SERVICES

.
%

ELASTICSEARCH

Lo

MESSAGEHUB

7

O

CLOUDANT

WV Vv

MysaL

60

Other views of Microservices

IBM Z/© 2018 IBM Corporation

61

The 12 FaCtOr App (https://12factor.net/)

THE TWELVE-FACTOR APP

INTRODUCTION

In the modern era, software is commonly delivered as a service: called web apps, or software-as-a-service. The twelve-factor

app is a methodology for building software-as-a-service apps that:

Use declarative formats for setup automation, to minimize time and cost for new developers joining the project;

Have a clean contract with the underlying operating system, offering maximum portability between execution
environments;

Are suitable for deployment on modern cloud platforms, obviating the need for servers and systems administration;
Minimize divergence between development and production, enabling continuous deployment for maximum agility;
And can scale up without significant changes to tooling, architecture, or development practices.

The twelve-factor methodology can be applied to apps written in any programming language, and which use any

combination of backing services (database, queue, memory cache, etc).

IBM Z/© 2018 IBM Corporation

62

Factor Z PoV
One codebase tracked in “If there are multiple codebases, it’s not an
e o app — it’s a distributed system. Each
revision control, LLELLL / deploys component in a distributed system (s an app,
I and each can individually comply with
twelve-factor.”
This is saying 12 Factor apps are unitary.
Explicitly declare and isolate This factor concerns modularity, reuse and
. dependency expression.
I1 dependencies The example of the value of this factor is one
of reliable build and deploy
Strict separation of config from “everything that is likely to vary between
111 | code deploys (staging, production, developer
environments, etc)”

IBM Z/ © 2018 IBM Corporation

63

Factor

Z PoV

IV

Backing Services

This is perhaps the most important of the 12
Factors which would need to be understood
thoroughly to successfully apply any of these
principles to z/OS applications.

This factor demands a structural separation
between the specific implementation of the
apps unique value from common underlying
services such as databases, messaging
services, email providers or caching services.

The principle here is that a 12 factor app
will bind to specific underlying service
providers

V

Build, release, run

“Strictly separate build and run stages”

What’s not to like?

IBM Z/ © 2018 IBM Corporation

64

Factor

Z PoV

VI

Processes

A statement about the execution
environment of the app and it’s more or less
just a version of the sysplex principle that an
app should not have any affinities with the
multiple servers requests to it might get
dispatched to.

VII

Port Binding

The assumption here is that the app is
providing a service which can be bound to by
a client requesting the service, so it had
better be able to bind to the externally
available transport resources required.

VIII

Concurrency

WLM, Threadsafety and elimination of
affinities again.

IBM Z/© 2018 IBM Corporation

65

IBMZ/©2

Factor

Z PoV

IX

Disposability

Resilience

Deployed instances of the app need to tolerate
management and unmanaged termination. Managed
disposibility enables the scaling down as well as up,
and unmanaged disposability means when
accidents happen it’s not disruptive (either a quick
restart is sufficient if the service instance was
actually a SPOF, or the workload was maintained on
surviving instances).

Dev/Prod Parity

All about the speed of the DevOps cycle -
minimizing the feedback time.

There’s some appeal to the loose coupling
from IV. Backing Services to make
developers’ lives easier

XI

Logs

This is actually just all about diagnostics.

XI1

Admin Processes

Developers and operators need similar
abilities to perform admin functions against
the service.

I8 TBMCorporation

66

