
Agile Applications using a 
Microservices approach.

Ian J Mitchell, IBM DE
Application Agility Architect

5th November 2018

Session: GB



Agenda

2IBM Z / © 2018 IBM Corporation

• Understanding the Opportunity

• Seeing is Believing

• Learning from Experience



Stakeholder Map

3IBM Z / © 2018 IBM Corporation



Stakeholder Map

4IBM Z / © 2018 IBM Corporation

S1
S2

Stakeholders



Understanding 
the Opportunity

5IBM Z / © 2018 IBM Corporation



So, you want to respond to business 
requirements more quickly?

6IBM Z / © 2018 IBM Corporation

• The services you provide are not seen as transforming to 
meet new business needs fast enough.

• Your existing application structure means it takes too 
long and carries too much risk to change fast.

• Your development process imposes unacceptable delays.

• Your teams are not accepting of agile practises and are 
not aligned or empowered to keep ahead of business 
needs

You've heard from companies which "need greater agility and scalability" are using Microservices to achieve 
"fast time to market and improved app quality" by using them to "prioritize the continuous delivery of single-
purpose services".



7

IBM Z / © 2018 IBM Corporation

But no one believes that

your mainframe applications

can be agile enough

to match this competition.

your mainframe developersyour mainframe toolsyour mainframe processesyour mainframe culture



Definition:

8IBM Z / © 2018 IBM Corporation

What…
Microservices is an architectural style that 
structures an application as a collection of loosely 
coupled services, which implement business 
capabilities.

The microservice architecture enables the 
continuous delivery/deployment of large, complex 
applications.

It also enables an organization to evolve its 
technology stack.

From Chris Richardson (Microservice.io)

http://microservices.io/


Definition:

9IBM Z / © 2018 IBM Corporation

What…
Microservices is an architectural style that 
structures an application as a collection of loosely 
coupled services, which implement business 
capabilities.

The microservice architecture enables the 
continuous delivery/deployment of large, complex 
applications.

It also enables an organization to evolve its 
technology stack.

From Chris Richardson (Microservice.io)

Why…
For fast time to market and improved app 
quality (IBM Cloud Garage Method).

To prioritize the continuous delivery of single-
purpose services. Becoming popular with 
companies that need greater agility and 
scalability (Pivotal).

"balancing speed and safety at scale.”

http://microservices.io/
https://www.ibm.com/cloud/garage/content/architecture/microservices/
https://pivotal.io/microservices


You need more knowledge about microservices:
Thoughtworks

11IBM Z / © 2018 IBM Corporation https://www.thoughtworks.com/insights/microservices

“Organizations which design systems 
are constrained to produce designs 

which are copies of the communication 
structures of these organizations”

- Conway, 1967



You need to understand when to adopt Microservices:
the Microservices Premium

12IBM Z / © 2018 IBM Corporation

https://martinfowler.com/articles/microservices.html https://martinfowler.com/bliki/MicroservicePremium.html



When to adopt Microservices:
the Microservices Premium (Martin Fowler)

13IBM Z / © 2018 IBM Corporation

https://martinfowler.com/articles/microservices.html https://martinfowler.com/bliki/MicroservicePremium.html

…primary guideline would be don't even consider 
microservices unless you have a system that's too 

complex to manage as a monolith. The majority of software 
systems should be built as a single monolithic application. 

Do pay attention to good modularity within that monolith, 
but don't try to separate it into separate services.



Common misconceptions about microservices

"microservices is SOA done right"

"microservices is what we've always done, just smaller components"

"APIs are microservices"

"microservices are fine grained web services"

"microservices is a technical concept"

"we don't need to review our organizational structure to do microservices"

"microservices has no downside, it just enables greater agility and scalability"

"everyone is doing microservices"

"we are going to refactor our 20 year old mainframe system into microservices"

"microservices is just about scalability"

"microservices means letting go of governance and control" 14



15

Core pillars (“dimensions of disruption!”)

Architecture 
& Design

Infrastructure 
& Technology

People & 
Process



16

Architecture & Design
Reference architecture

Agile integration
APIs (boundaries)

Messaging in microservices

Infrastructure 
& Technology

People & 
Process



17

Hybrid Integration Reference 
Architecture

short blog post http://ibm.biz/MicroservicesVsSoaBlog, 
video (10 mins) http://ibm.biz/MicroservicesVsSoaVideoShort

paper (~15 pages) http://ibm.biz/MicroservicesVsSoa
webinar (55 mins) http://ibm.biz/MicroservicesVsSoaFullWebinar

Microservices vs SOA 

article (~15 pages)

http://ibm.biz/HybridIntRefArch

Moving from ESB to agile integration architecture

webninar (20 mins)
http://ibm.biz/MicroservicesAndMessagingWebinar

Microservices and messaging 

Note: The importance and positioning of API management is discussed in all of the above

posts and articles
http://ibm.biz/AgileIntegArchLinks

webinar (45 mins)

http://ibm.biz/HybridIntRefArchYouTube

Publically available material (typically publicized via https://developer.ibm.com/integration/blog)

moving to agile integration architecture
http://ibm.biz/AgileIntegArchPaper

http://ibm.biz/MicroservicesVsSoaBlog
http://ibm.biz/MicroservicesVsSoaVideoShort
http://ibm.biz/MicroservicesVsSoa
http://ibm.biz/MicroservicesVsSoaFullWebinar
http://ibm.biz/HybridIntRefArch
http://ibm.biz/MicroservicesAndMessagingWebinar
http://ibm.biz/AgileIntegArchLinks
http://ibm.biz/HybridIntRefArchYouTube
https://developer.ibm.com/integration/blog
http://ibm.biz/AgileIntegArchPaper


What is microservices architecture?

Microservice comp

Silo logic

Silo 
data

Microservice comp

Microservice
component

Microservices ApplicationMonolithic Application A set of principles that 
guide the breaking down 
of large components into 
smaller, more self 
contained ones enabling 
greater agility, more 
elastic scalability and and 
more differential 
resilience.

Fundamental principles 
include maximizing 
isolation and decoupling 
between components 
(including their data), 
making components as 
stateless as possible and 
avoiding affinities. 

Supporting requirements 
include fully automated 
DevOps pipelines and 
good automated test 
coverage. 

IBM Z / © 2018 IBM Corporation 19



IBM Z / © 2018 IBM Corporation 20

Putting Microservices in context



21IBM Z / © 2018 IBM Corporation

An API means the service can be consumed and managed more easily.

Microservices = APIs

Microservices demand APIs.



22IBM Z / © 2018 IBM Corporation

A fast and reliable DevOps cycle means the service can continue to meet the 
business needs whilst maintaining high quality of delivered production instances.

Microservices demand APIs.Microservices demand a combination of APIs and DevOps.

Microservices = APIsMicroservices = APIs + DevOps



Microservices = APIs + DevOps

Microservices demand a combination of APIs and DevOps.

23IBM Z / © 2018 IBM Corporation

Microservices = (APIs + DevOps) x Innovation

Business need for innovative use of the services drives the demand.

Microservices demand a combination of APIs and DevOps
where Innovation is rewarded.



Microservices demand a combination of APIs and DevOps
where Innovation is rewarded.

Microservices = (APIs + DevOps) x InnovationMicroservices = (APIs + DevOps) x Innovation x Agile Culture 

24IBM Z / © 2018 IBM Corporation

Our chief weapon is surprise...surprise and fear...fear and surprise.... Our two weapons are fear and surprise...and ruthless efficiency.... Our 
*three* weapons are fear, surprise, and ruthless efficiency...and an almost fanatical devotion to the Pope.... Our *four*...no... *Amongst* our 

weapons.... Amongst our weaponry...are such elements as fear, surprise....

Without an agile culture the services will quickly go stale.

Microservices demand a combination of APIs and DevOps
where Innovation is rewarded within an Agile Culture.



Questions

26IBM Z / © 2018 IBM Corporation

Time for questions to refine that objective:

• Does your organisation have APIs?

• Does you organisation have Microservices?

• Do you believe Microservices and APIs are the same?

• Are Microservices a cloud-only architecture?

• Are you creating, services, APIs or both?

• Does this impact your business?

• How does this impact your business? Speed/Scale/Quality/other

• Is this natural for your organisation now? eg Fowler - products not projects.

• What (who?) are the inhibitors which will make this difficult?

• Can you initiate the necessary changes?



Seeing is believing

27IBM Z / © 2018 IBM Corporation



Organizations Are Adopting a Multi-Cloud Strategy

IBM Z / © 2018 IBM Corporation

+Public

Getting new value from
third parties

Private

Extracting value from
your entire business

8 out of 10 committing to Multi-Cloud
71% use 3 or more clouds 

28

Do you have a multi cloud strategy.  Who are your vendors? 



Continuous 
Integration & 
Delivery

DevOps

Micro Services Containers

By 2018, 

Over 60% of New Apps will use 
cloud-enabled continuous delivery 

and cloud-native application 
architectures to enable faster 

innovation and business agility. 

(IDC Prediction)

Evolution of how workloads 
are built & delivered

IBM Z / © 2018 IBM Corporation 29

Do you have a PAAS strategy? 
Does your company use containers and orchestration 
tech? which? Are you doing cloud native?



Multi-cloud management and orchestration

Modernize and optimize 
existing applications

Opening up enterprise
data centers to work
with cloud services

Create new
cloud-native
applications

1 2 3

Key Use Cases Driving “Private Cloud” Adoption

IBM Z / © 2018 IBM Corporation 30

What are your adoption patterns are you seeing in private cloud?



Solution Overview – IBM Cloud Private
… to enable enterprises to both innovate & optimize

3131

Choose your
infrastructure:

IBM Z

Enterprise Content Catalog
Open Source and IBM Middleware, Data, Analytics, 

and AI Software

Core Operational Services
Log Management, Monitoring, Security, Alerting

Kubernetes Container 
Orchestration Platform

Strategic Value:

Self-service catalog

Agility, scalability, and 
elasticity

Self-healing

Enterprise security

No vendor lock-in

IBM Z / © 2018 IBM Corporation 31

What workloads in production you run on containers if any?
Are you already using another vendor here? (openshift, docker EE etc)



Enterprise grade       Open by design      Secured by IBM Z

Rapid 
Innovation

Differentiated 
Integration

Investment 
Leverage

Management and 
Compliance

• Modernization and Digital 
Transformation Speed. 

• Highest levels of Security
• Only private cloud 

offering that can support 
IBM Z

• Application Modernization 
with IBM Middleware and 
Container content. 

• Digital Transformation with 
Z/OS*

• Cloud Native Services with 
Hyper Protect Containers and 
Runtimes

Benefits on Z Adoption Patterns

IBM and ISV Middleware, Data, Analytics 
and Developer Services

Core Operational Services
(security, logging, monitoring etc)

Kubernetes Platform 
Industry Standard 
Containers

IBM Cloud Private

*

IBM Z and LinuxONE

CAM
VM Based
Workloads

Introducing IBM Cloud Private on Z

IBM Z / © 2018 IBM Corporation 32



Compose high-performance scalable applications.  Dynamically and seamlessly re-allocate 
resources. Provide right-time analytics and powerful engagement

Extreme Virtualization and Scale
• 1k Linux guests/hypervisor

• 85 EAL5+ zVM/KVM per box
• +2 million docker containers
• 17TB Mongo instance
• Hypervisor communication via fast, in-memory 

TCP/IP Hipersockets or Shared-OSA
• 5x less latency than discrete servers

• Massive dedicated I/O
• 640 Power co-processors

• 3GB combined cache, 5Ghz CPUs, crypto 
acceleration

Super Elastic System
• Combine scale-up and scale-out
• Non-disruptively add/remove resources from 

Linux guests
• Non-disruptively add/remove Linux guests

Linux on Z/LinuxONE

Se
cu

rit
y

CPs/mem/IO/hypersockets

LPAR1

DB2

LPAR2

Linux guest

…

Linux guest

ICp master on 
Intel/Power

scale-out

sc
al
e-
up

LinuxONE: Scalable, highly-available and secure private cloud

33IBM Z / © 2018 IBM Corporation



Digital Transformation Inclusive of z/OS

34IBM Z / © 2018 IBM Corporation

IBM Z as a differentiating asset in ICP from services that span z/OS, Linux on Z, private and public cloud
§ Cloud consumption for z/OS (DBz-aaS, WASz-aaS,  MQ-aaS, CICS-aaS etc)
§ DevOps, microservices and application life-cycle management for zOS

Public Cloud

Open Service Broker APIs

IBM Cloud private (ICp) master 
(x86/Power) 

Se
cu

rit
y

DB2

z/OS

CPs/mem/IO/hipersockets

z/VM

service service service…
Linux Linux

CICS/ 
IMS

z/OSMF

ICp ICp ICp

KVM

IBM Z

z/OS 
Connect

Linux

service

ICp

Intel/Power 
(On-prem)

VMWare 
ESXi

Linux

servi
ce

ICp
Linux

ICp ICp

servi
ce

servi
ce…

ICp bundle for z/OS



Learning 
from 
Experience

35

The May GMAC asked for a consolidated view of the 
current state of agile application projects across 
Fiducia /GAD, ADP, and American Express as sponsor 
clients. 

Workshops were conducted across multiple clients 
with the aim to understand working approaches to 
application agility on the Z platform and distill 
practical guidance which  can be published to the 
client community. 

By exploring this topic in this way, IBM will be better 
able to make recommendations and supply the right 
tools to improve the developers’ user experience and 
the enterprise’s agility on the Z platform.

IBM Z / © 2018 IBM Corporation



What we heard

36IBM Z / © 2018 IBM Corporation



What’s working… § Some example of different development models

§ Examples of fast production deployments in 2 
week sprints (or faster) do exist.

§ Agile “whole” team practices assisted by 
organizational adjustments. “The Band-Aid was 
ripped off”

§ Semi-automated deployment pipelines

§ Skills are mixing across Z and the enterprise

§ Examples of Ops in scrum team

§ Teams owning a product for full lifecycle 

§ Global “production like” test environments exist

§ Access to Dev-Test pricing containers barriers to 
development testing.

§ API’s are prolific

37

“We can do things quickly!”

IBM Z / © 2018 IBM Corporation



Pain Points & Gaps § Tooling inconsistent and unfamiliar across the enterprise

§ Parallel development restricted by not using incumbent 
tooling

§ Lack of interlock between development and operations 
team

§ Uncertainty in change quality leading to risk aversion

§ Uncertainty on the cost impact of changes

§ Limited knowledge of production impact by developers.  

§ Impact of deployments to operations unclear

§ Minimal automated testing, consistent testing 
environments, access to stable testing environments for 
both applications and data

§ Minimal access to new technology when they want it

§ Continuity of support for deployed applications

38IBM Z / © 2018 IBM Corporation



Insights
39IBM Z / © 2018 IBM Corporation



One team

All squads have both 
Mainframe and 
Distributed skills on 
the team

Align organization to 
products

Reorganize the 
organization to align 
with Products instead 
of projects with a one 
team approach

Cross  training

Teach Mainframe 
folks Java and 
Container skills.

Teach Distributed 
folks COBOL and 
Mainframe skills

Get everyone involved

Identify a champion to 
lead the change
Involve all personas in 
all phases of 
development

Organization

40

Break down traditional 
boundaries and unite the 
teams across platforms

IBM Z / © 2018 IBM Corporation



Repeatable

Regression testing is 
essential to build 
confidence that cycle-
times can be reduced.

Fed by data

An efficient supply of 
high quality, 
anonymized data is 
essential for effective 
automated testing.

Automated

We have too many 
people running tests 
when they should be 
designing and 
implementing 
automated tests.

For developers

We need private 
environments for Unit 
Test, with FAST
turnaround in the edit, 
compile, and debug 
cycle.

Testing

41

Code, build, release and deploy 
with confidence

IBM Z / © 2018 IBM Corporation



Automate everything

Minimize the need for 
manual steps through 
automation. Everyone 
is using the same 
automation for build, 
test, and deployment.

Frequent

Squads need frequent 
feedback from 
working code which 
requires frequent 
quality builds 

Open source

Use open source tools 
to build that pipeline. 
Aspiration that release 
pipeline open source 
packages run on the 
mainframe.

Common pipeline

One pipeline and 
practices for 
mainframe and 
distributed.

Release Pipeline

42

A common release pipeline 
using open source on all 
platforms.

IBM Z / © 2018 IBM Corporation



Evolution

A more fine grained 
set of assets is faster 
and easier to 
change/version, test 
and deploy.

Curating

Today’s monoliths are 
difficult to evolve and 
tools are needed. Eg.
measuring and 
eliminating dead code 
and its overheads.

Decomposition

Modeling and 
exposing a monolith 
via API is the first step 
to modernize it. 
Decomposing enables 
the asset to align with 
the new organization.

Consumability

APIs are the face of 
your service. 
Designing APIs which 
delight the 
developer/consumer 
unlocks innovation.

APIs and Refactoring

43

Realizing the value of current 
assets and ensuring it endures

IBM Z / © 2018 IBM Corporation



Developer self service

Allow developers to 
allocate and create 
containers with 
middleware and 
anonymize test data

Freedom to run

Write workloads in a 
platform agnostic 
manner and create a 
governance model to 
determine run 
platform

Exploit platform 
isolation

Run applications in 
isolation with 
middleware, data, and 
monitoring. 

Don’t replace 

Instead of rebuilding 
everything on  
mainframe be 
strategic and rewrite 
in a platform agnostic 
way

Runtimes 

44

Freedom to put any content on 
the platform

IBM Z / © 2018 IBM Corporation



Next steps
45IBM Z / © 2018 IBM Corporation



46

Containers

Testing

Pipeline

Some container like characteristics: 
• Isolation, WLM, Security

Multiple languages: COBOL, PLI, Java, Node.js
Missing packaging and standardization and deployment

Good enough?
• Too manual, cumbersome to provision, labor-intensive, non-repeatable, often neglected, too expensive…

Proprietary and bespoke
• Inflexible SCM, bespoke/homegrown automation, manually driven, …

Common Practice

APIs and 
Refactoring

API exposure of existing applications
• Manual identification or historical knowledge
• Refactoring of “edges” to API enable



47

Containers

Testing

Pipeline

APIs and 
Refactoring

Possible Practice

Full standard experience on Linux on Z

Platform agnostic workloads with Java and Node.js (LoZ and zOS) 

Automated pipeline GIT/RTC, Jenkins, DBB allowing parallel development

Quickly and reliably provision isolated and representative test environments with 
apps and data 

Identification of API candidates, business rule discovery and source identification 
for refactoring or extending (in new languages)
Code coverage, dead code identification



48

Future Practice

What’s next for zOS?

For developers “one click” provision and deploy
Integrate opensource pipeline tools 

Auto provisioned, monitored, integrated end to end, validated quality gates 
governing pipeline.

Developers understanding the impact of app changes before deployment 
Developer experience consistent across the whole enterprise 

Containers

Testing

Pipeline

APIs and 
Refactoring



• Align teams including cross organization 
members: development, operations, 
cloud, mainframe…

• Implement possible practices in your 
shop today

• Refine future roadmap with sponsor-
users across:
§ Testing

§ Release Pipeline

§ APIs and Refactoring

§ Runtimes

49IBM Z GMAC Confidential /  © 2018 IBM CorporationIBM Z / © 2018 IBM Corporation



© Copyright IBM Corporation 2018. All rights reserved. The information contained in these 
materials is provided for informational purposes only, and is provided AS IS without warranty 
of any kind, express or implied. Any statement of direction represents IBM's current intent, is 

subject to change or withdrawal, and represents only goals and objectives. IBM, the IBM 
logo, and other IBM products and services are trademarks of the International Business 

Machines Corporation, in the United States, other countries or both. Other company, product, 
or service names may be trademarks or service marks of others.



Our landscape:
Coherency of experience

Linux on Z & Secure Service Container

LinuxONE

Docker & Kubernetes

IBM Cloud UX

images

containers

OS & HW

service 
mgmtIBM Cloud Private (Core)

51IBM Z / © 2018 IBM Corporation



Our landscape:
Coherency of experience

Linux on Z & Secure Service Container

LinuxONE

Docker & Kubernetes

IBM Cloud UX

images

containers

OS & HW

service 
mgmt

On-Prem Cloud

DBaaSCrypto
/HSMIBP

IBM Cloud Private (Core)

52IBM Z / © 2018 IBM Corporation



Our landscape:
Coherency of experience

Linux on Z & Secure Service Container

LinuxONE

Docker & Kubernetes

IBM Cloud UX

images

containers

OS & HW

service 
mgmt

On-Prem Cloud

DBaaSCrypto
/HSMIBP

IBM Cloud Private (Core)

zOS Cloud and Provisioning
zOSPT

z14

zOSMF

On-prem/private apps
Custom 

app

z/OS

CLI & Web UI

z/OS LoZ

53IBM Z / © 2018 IBM Corporation



Our landscape:
Coherency of experience

Linux on Z & Secure Service Container

LinuxONE

Docker & Kubernetes

IBM Cloud UX

images

containers

OS & HW

service 
mgmt

On-Prem Cloud

DBaaSCrypto
/HSMIBP

IBM Cloud Private (Core)

zOS Cloud and Provisioning

On-prem/private apps

CLI & Web UI

z/OS LoZ

54

zOSPT

z14

zOSMF

Custom 
app

z/OS

ICP Domain software and servicesDashboard (Helm) 
Repository Running Servicebrowse Select/

Config/
Install

ApplicationUse 
URL to 
access

IBM Z / © 2018 IBM Corporation



Our landscape:
Coherency of experience

Linux on Z & Secure Service Container

LinuxONE

Docker & Kubernetes

IBM Cloud UX

images

containers

OS & HW

service 
mgmt

On-Prem Cloud

DBaaSCrypto
/HSMIBP

IBM Cloud Private (Core)

zOS Cloud and Provisioning

On-prem/private apps

Custom 
app

CLI & Web UI

z/OS LoZ

ICP Domain software and servicesDashboard (Helm) 
Repository Running Servicebrowse Select/

Config/
Install

ApplicationUse 
URL to 
access

55

zOSPT

z14

zOSMF

z/OS

IBM Z / © 2018 IBM Corporation



Our landscape:
Coherency of experience

Linux on Z & Secure Service Container

LinuxONE

Docker & Kubernetes

IBM Cloud UX

images

containers

OS & HW

service 
mgmt

On-Prem Cloud

DBaaSCrypto
/HSMIBP

IBM Cloud Private (Core)

zOS Cloud and Provisioning

On-prem/private apps

Custom 
app

CLI & Web UI

z/OS LoZ

ICP Domain software and servicesDashboard (Helm) 
Repository

Running 
Service

browse Select/
Config/
Install

ApplicationUse 
URL to 
access

56

zOSPT

z14

zOSMF

z/OS

IBM Z / © 2018 IBM Corporation



Our landscape:
Coherency of experience

Linux on Z & Secure Service Container

LinuxONE

Docker & Kubernetes

IBM Cloud UX

images

containers

OS & HW

service 
mgmt

On-Prem Cloud

DBaaSCrypto
/HSMIBP

IBM Cloud Private (Core)

zOS Cloud and Provisioning

On-prem/private apps

Custom 
app

CLI & Web UI

z/OS LoZ

ICP Domain software and servicesDashboard (Helm) 
Repository Running Servicebrowse Select/

Config/
Install

ApplicationUse 
URL to 
access

57

zOSPT

z14

zOSMF

z/OS

IBM Z / © 2018 IBM Corporation



Our landscape:
Coherency of experience

Linux on Z & Secure Service Container

LinuxONE

Docker & Kubernetes

IBM Cloud UX

images

containers

OS & HW

service 
mgmt

On-Prem Cloud

DBaaSCrypto
/HSMIBP

IBM Cloud Private (Core)

zOS Cloud and Provisioning

zOSPT

z14

zOSMF

On-prem/private apps

Custom 
app

z/OS
Open 

Containers
on z/OS

CLI & Web UI

z/OS LoZ

ICP Domain software and servicesDashboard (Helm) 
Repository Running Servicebrowse Select/

Config/
Install

ApplicationUse 
URL to 
access

58IBM Z / © 2018 IBM Corporation



Our landscape:
Coherency of experience

Linux on Z & Secure Service Container

LinuxONE

Docker & Kubernetes

IBM Cloud UX

images

containers

OS & HW

service 
mgmt

On-Prem Cloud

DBaaSCrypto
/HSMIBP

IBM Cloud Private (Core)

zOS Cloud and Provisioning

On-prem/private apps

Custom 
app

CLI & Web UI

z/OS LoZ

ICP Domain software and servicesDashboard (Helm) 
Repository Running Servicebrowse Select/

Config/
Install

ApplicationUse 
URL to 
access

59

zOSPT

z14

zOSMF

z/OS

IBM Z / © 2018 IBM Corporation



IBM Z / © 2018 IBM Corporation 60

IBM Cloud
Tutorial
Architecture



IBM Z / © 2018 IBM Corporation

Other views of Microservices

61



IBM Z / © 2018 IBM Corporation

The 12 Factor App (https://12factor.net/)

62



IBM Z / © 2018 IBM Corporation

Factor Z PoV

I

One codebase tracked in 
revision control, many deploys

“If there are multiple codebases, it’s not an 
app – it’s a distributed system. Each 
component in a distributed system is an app, 
and each can individually comply with 
twelve-factor.”

This is saying 12 Factor apps are unitary.

II
Explicitly declare and isolate 
dependencies

This factor concerns modularity, reuse and 
dependency expression.
The example of the value of this factor is one 
of reliable build and deploy

III
Strict separation of config from 
code

”everything that is likely to vary between 
deploys (staging, production, developer 
environments, etc)”

63



IBM Z / © 2018 IBM Corporation

Factor Z PoV

IV

Backing Services This is perhaps the most important of the 12 
Factors which would need to be understood 
thoroughly to successfully apply any of these 
principles to z/OS applications.

This factor demands a structural separation 
between the specific implementation of the 
apps unique value from common underlying 
services such as databases, messaging 
services, email providers or caching services.

The principle here is that a 12 factor app 
will bind to specific underlying service 
providers

V
Build, release, run “Strictly separate build and run stages”

What’s not to like?

64



IBM Z / © 2018 IBM Corporation

Factor Z PoV

VI

Processes A statement about the execution 
environment of the app and it’s more or less 
just a version of the sysplex principle that an 
app should not have any affinities with the 
multiple servers requests to it might get 
dispatched to.

VII
Port Binding The assumption here is that the app is 

providing a service which can be bound to by 
a client requesting the service, so it had 
better be able to bind to the externally 
available transport resources required.

VIII
Concurrency WLM, Threadsafety and elimination of 

affinities again.

65



IBM Z / © 2018 IBM Corporation

Factor Z PoV

IX

Disposability Resilience
Deployed instances of the app need to tolerate 
management and unmanaged termination. Managed 
disposibility enables the scaling down as well as up, 
and unmanaged disposability means when 
accidents happen it’s not disruptive (either a quick 
restart is sufficient if the service instance was 
actually a SPOF, or the workload was maintained on 
surviving instances).

X
Dev/Prod Parity All about the speed of the DevOps cycle -

minimizing the feedback time.
There’s some appeal to the loose coupling 
from IV. Backing Services to make 
developers’ lives easier

XI Logs This is actually just all about diagnostics.

XII
Admin Processes Developers and operators need similar 

abilities to perform admin functions against 
the service.

66


