Automated regression and
component test

Will Yates
Sept 2018

Disclaimer

= IBM'’s statements regarding its plans, directions, and intent are subject to change or withdrawal
without notice and at IBM’s sole discretion.

= |nformation regarding potential future products is intended to outline our general product direction
and it should not be relied on in making a purchasing decision.

= The information mentioned regarding potential future products is not a commitment, promise, or
legal obligation to deliver any material, code or functionality. Information about potential
future products may not be incorporated into any contract.

= The development, release, and timing of any future features or functionality described for our
products remains at our sole discretion.

= Performance is based on measurements and projections using standard IBM benchmarks in a
controlled environment. The actual throughput or performance that any user will experience will vary
depending upon many factors, including considerations such as the amount of multiprogramming in
the user’s job stream, the 1/O configuration, the storage configuration, and the workload processed.
Therefore, no assurance can be given that an individual user will achieve results similar to those
stated here

24 hours

3234 Test Classes

Average 8 minutes

26,835 mins elapsed time

447 hours of test time

> 18 V2 parallel tests
constantly executing

0 mins of human intervention

Where we started

And why we needed to change

Standard waterfa1| model

A Slow and man power mtenswe ’

Expensive 7 SN o TR

Tools
In house built VM Based IDE & SCM

Lack of skills

Couldn’t support future development such as Java

5 |
N Ty s A5 L
> y A \ - | are - 5 24
- . - : T
3 O Y=
. » N - o tany
SR NS, o
. ’, | .,»-_‘\. 7
1 IY'.;'~..\- -
"' | LS
; ’ 3 =y
> L “ o
-~ 1 S SN e o S R .
' g ¢ MCTICY S o
. - > e 0, 9 b e WL o N
o 3 e & O
- . _cadl _~-
! & . : SR -
A . » g
S . - o -,
. s ™
B w - - .
by ". v 4 - 4 g J" . ” N 7 \
- T lf v
»

Home grown ‘test todllng across multlpié framewbrks

.z“ S

Lots of manpower to malntaln X

N
b <)
N ;‘ ;
3 i "‘ 5 \
) . ‘2 .
. f: “

2
. o
- . \ N <
. 4 “
“ g
. PP e
. . o '-‘.\ LS e
*
. » L SN -
" - - T — .
o - 1 .

\ \ -
\ \ - \
'\ 4 \ 7 .-" .)

L H . (= .

New Beginnings

2005 - 2009

-

2N ?
Adoptlon of IBM Rationaj Unified Process
Adoptlon of |ferat|ve dévelépment ?‘;,,’,

CICS (4 months -> 2 months => 1 month""
CICS Eg(plorerw(-> 2 weeks) Aww

Tools Changes

Rational Team Concert
— Initially used for project & task management

ANTz (ANT for z/OS)
— Used for product build (75% reduction in build time)

Rational Team Concert
— Used to hold source code

Engineers adopted IDz / RDz / Eclipse

\le'are fairly unique:

4 Thousands of tesp/Suites ol
«‘ Using variedg@st technol@gies (terminal |
= seleniurg lnteraction) etc

Running’ '

s in o
0 rs of

)S and int grating wi

ad th o[.--'xten_ ‘s"t ramework -,
./ Maven prowded a%‘ ‘ge‘archltecture
Dockﬁr provided good tQ& solatlon
z/OSMF prowded a way to

Running a test in JAT

Test code
stored in RTC

= eclipse

Request made
to run a new
test

Jenkins uses
=> maven to build

tests

Docker
container

_}) started with

JAT framework

—)

JFrog

ARTIFACTORY

—>

Latest test
bundle code

Tests are written in eclipse and stored in RTC.
An automated Jenkins pipeline builds the tests

and stores the OSGi bundles in an artefact

repository

Entire CICS

configuration
pulled from — provisioned for

artifactory

Running the test framework in docker and
kubernetes adds scalability and resilience.
Each test gets it’s own logically isolated CICS
environment to test in. This adds reliability

this test

Test Executed,
all logs copied
from z/0S to
database

Test
environment
de-provisioned
automatically

Writing a test in JAT

//Let JAT know this is a CICS test
@CICSTest

//Provision a CICS environment
@Topology(”SingleRegion™)

//Provide some local input to the provisioned CSD
@CSDInput(file = "csdinput/LE370CSD", tag = "A")

//Compile a CICS enabled program
@CICSProgram(lang = Language.COBOL, name = "programs/oocob014.cobol")

//Add a load library to DFHRPL
@LoadLibrary(LLQ = "FV.PROGRAMS.LOAD", addHLQ = false)

//What area does this test exercise
@AreasTested(primaryArea=TestingArea.Core_Logger)

public class BasicTest{

@CICSTerminal(tag = "A")
public ITerminal terminal; //JAT inserts an object ref to a simulated terminal connected to CICS

@CICS(cicsTag = "A")
public ICICS cicsRegion; //JAT inserts an object ref allowing the test to interact with CICS

@Test

public void basicTest() throws TerminalException $
terminal.sendTextWithEntexr (“CEMT");

}

Adapaters_MQ
Mike Fish

Comms

Operations_Policy
Jackie Scott

AppDeployment_Bundles
Chris Atkinson

Comms_FunctionShipping
Will Yates

Runtimes_JVMServer
Alex Brown

AppServices

Comms_IPIC
Xue Yong Zhang

Runtimes_Node
Chris Atkinson

Venus Integrated

AppServices_API AppServices_AsyncServices
Core_lInitialisation Core_Logger
Roger Brooks Roger Brooks

AppServices_Debug
Jeremy Weaving

Core_Recovery
Roger Brooks

Web_TCPIPServices Web_Webservices
Jeremy Weaving Gill Curwen

00

Web_Webservices_zOSConnect

Web_WebServices_JSON
Jeremy Weaving

Appservice_EP
Jackie Scott

Core_Security
Chris Atkinson

RDO
Gill Curwen

Cloud
Mat Comer

CPSM
Mat Comer

Web_WebServices_PHP
Qin Li

Core Regression Operations_Policy (Global) -as06

Results (Most recent on Overview Definition = >
Testcase Name 1 Environment left) Run ID Owner Tags End Time
AsyncRunTransidRequestPolicy Venus:Integrated (VI 111/ 1v1vIvIviv) J719510 Hill3_Provisioning DTS 05/09/2018,
core_regression 05:07:42 Re su |t (3
phoenix
CLOUDV5_core Venus:Integrated [VIxIVI I T IxIvIxIV] J718839 Hill3_Provisioning DTS 05/09/2018,
core_regression 01:30:51
phoenix
CPUTimePolicyandElapsedTimePolicy Venus:Integrated Q000000000 J719516 Foundation DTS 05/09/2018,
core_regression 05:20:52
phoenix
DB2Policy Venus:Integrated Q000000000 J719402 Hill3_Provisioning DTS 05/09/2018,
core_regression 04:42:50 ReSU It COU nts
phoenix
Result Count Perc
DLIPolicy Venus:Integrated [VIIvIvIvIvIvIvIvIV] J719515 Hill3_Provisioning DTS 05/09/2018,
core_regression 05:22:24
phoenix Passed 30 100.0%
ExecCicsRequestPolicy Venus:ntegrated 0000000000 J719380 Hill3_Provisioning DTS 05/09/2018, Total 30
core_regression 04:23:05
phoenix
FileRequestPolicyandSyncpointRequestPolicy Venus:Integrated Q000000000 J719065 Foundation DTS 05/09/2018,
core_regression 02:38:41
phoenix
NameCounterRequestPolicy Venus:Integrated Q000000000 J719540 Hill3_Provisioning DTS 05/09/2018,
core_regression 05:22:56
phoenix

21

What JAT brings us

Error resistant way of writing tests

Configurations specified through annotation

Scalable, logically isolated, repeatable test environments

All diagnostic information held in one place

Reporting of test results

Reliable, performant, maintainable tests

g
No other test framework can provide what JAT provides

Target

Include a change set in a quality beta build within 24 hours!

Automated end-to-end pipeline

ational

Change set
delivered to
stream

B

<KAPACHE ANT>

/’A’I) AR

Copy changes
to new RTC
workspace

—

Build CICS
from
workspace

e

=

Delta or full build can
be specified based on

Select Tests

=N

Tests are selected based upon
target stream and on CICS

e

Promote Code

Execute Tests

Raise Defect

workspace being built changes
I: pipeline :I

Jenkins coordinates the entire pipeline

Where possible off the shelf plugins have been used to integrate
with our chosen tools, if plugins are not available they have been

written

9 Pipeline is a parallel process so multiple instances can be executed
Pipeline can be triggered for any set of changes making it re-usable

Automated end-to-end pipeline

CICS]
Developer RTC pipeline :l
work space L

Integrated Pipeline

Every 30 mins
Pipeline triggered for smallest set of
delivered changes
BVT set of tests executed along with
a more intense selection based on
CICS modules changed
If pipeline succeeds

* Changes promoted to

Integrated stream

Stream built each night for a daily
build

Stream Stream

l: pipeline

L Increment

Integrated

Stream

pipeline :]

Beta

Integrated Build
Every 8 hours

* Pipeline asked to run a delta build

» Build is SMPE packaged and
installed

* SMPE package is installed

» Core Regression Tests executed

Beta Build

Every 8 hours (+4 hrs from Integrated)
Entire workspace is built by Ant/z (FULL)
Build is SMPE packaged

SMPE package is installed (DFHISTAR
and non ISTAR)

Entire test corpus is run

Bad changes never make it to a build, neither do they hold up good code

Shift Left

Change set
delivered to
stream

AP
/»“)- { >~

<KPACHE ANT>

Copy changes

:> to new RTC

workspace

Build CICS
from
workspace

e

—

Select Tests

—

Tests are selected based upon
target stream and on CICS
changes

e

Execute Tests

|

Since the pipeline can be executed against any set of changes we can even run it against a
developers own RTC workspace before code is delivered

JATs scalable nature means tests are run in parallel — minimising developer wait time

Highly reliable tests reduce false positives and builds trust

All diagnostic data is available in the eclipse client for a developer

Supports TDD

Only once the developer has run shift left can they deliver their code.

The CICS Automated Build, Deploy and Test Pipeline

Beta
Pipeline Integrated Pipeline Increment
Incoming into this node
Incoming into this node Incoming into this node
. " . P " Queued: 4
Dellvery No incoming changesets No incoming changesets
Promoted into this node Promoted into this node Promoted into this node
No promoted changesets No promoted changesets
Promoted: 125
I can check the Ul to
see how far my new Integrated Increment
code is progressing Incoming into this node Incoming into this node
throth the automated No incoming changesets No incoming changesets
pl pel Ine. Promoted into this node Promoted into this node
Promoted: 5 Promoted: 5
13:09 Fix xsdfor policy events. Add {USERTAG} variable for user to replace. promoted 139435: System rule XSD files don't match the expected event in DSI
22/05/2017
13:09 Flow to 690 plus additional chnage for R2 promoted 138823: Defect for fixing APAR PI79851 in CICS TS V5.2
22/05/2017 138817: Defect for fixing APAR PI79851 in CICS TS V5.3
13:09 Flow to 700 promoted 138817: Defect for fixing APAR PI79851 in CICS TS V5.3
22/05/2017
13:09 Guard trace call promoted 139648: WLPLink.c has unguarded logging message
22/05/2017
13:09 INCOMPLETE state correct when not UNDEPLOY promoted 139566: QTYPE: DFHDPLOY: UNDEPLOY APPLICATION can transition from disable to discard state too early
22/05/2017

27

Automated pipeline testing

In paraIIeI to the automated pipeline, extensive overnight automated regression testing gives daily awareness of the quality of the CICS product
More in-depth testing than the core pipeline tests. Over 1000 multi-language, multi-product test suites compared to over 500 test suites executed in the
pipeline
« JAT design enables highly parallel execution
» Stable, high quality test cases. Expectation is a 100% pass rate.
» Tests are CICS level agnostic allowing them to be run on all releases of CICS for which that test is relevant
» Test results are comprehensively displayed in a Ul.
» Displays the results of the last 10 runs upfront, with details of the last 100 runs also available.
» Allows teams to create collections of tests. Teams can create “collections” of tests to view test results in anyway they wish e.g. by Hill, by
Functional Area etc.
» Enables a collection of tests to be created for each Hill

Implemented an Automated Pipeline for regression testing of PTF fixes.
» One click of a button to initiate building and packaging of a PTF, deploying CICS, running automated tests, automated submit to the PTF distribution

CCTIUCT.
% | (3 2systems 20 1ty A1 lgios C: 1620538 - EPgsstentTimersD. jos Cor. Lo |
= Gﬁ fequiré$ htiman lnteractf‘oh if a problem is found lolsie e e T

. Q) 13 Wbt & Phosnis Dasbosd 8 SeltrceCose Vi, 153 Sck [8) BM-Blockahan & Mocsse @ 5D s> s

P ey —

= W

OverallRun Log & ® Message Level TRACE ~

a0

nsa

000 i
naes
nues v
o00 AN M Prmseny
o00 nats
0000000000 nus W
00000000 © e
©000: 100 o
0000000000 s
e
[] tenensrrgans 00000 : nan W

L LI T

Build notifications in Slack

Service Tests APP 1:.08 PM
Service » 710-Apply-Test-Accept-Ship - #131 Success after 47 min (Open)
Test Status:

Passed: 513, Failed: O, Skipped: O

Service Tests APP 3:.08 PM
Service » 700-Apply-Test-Accept-Ship - #128 Success after 52 min (Open)
Test Status:

Passed: 513, Failed: O, Skipped: O

Service » 670-Apply-Test-Accept-Ship - #34 Success after 41 min (Open)
Test Status:
Passed: 492, Failed: O, Skipped: O

Service Tests APP 7:.05 PM
Service » 710-Apply-Test-Accept-Ship - #132 Success after 44 min (Open)
Test Status:

Passed: 513, Failed: O, Skipped: O

Service Tests APP 9:.03 PM
Service » 700-Apply-Test-Accept-Ship - #129 Success after 47 min (Open)
Test Status:

Passed: 513, Failed: O, Skipped: O

@ Service Tests APP 4:54 PM

29

So why tell you all this

Why am | telling you this

To demonstrate the art of the possible

To show the amount of testing we perform for CICS

To understand how mature your testing infrastructure is

To understand the appetite if we were to open source JAT and make it freely available
— Yes we are seriously considering this

Summary

= Testing CICS = Testing CICS applications

= In CICS we have a 15t Class Test framework we believe is the best in the world
= We really want to share this with you

= |Interested?

wyates@uk.ibm.com

