
Will Yates
Sept 2018

Automated regression and
component test

Disclaimer
§ IBM’s statements regarding its plans, directions, and intent are subject to change or withdrawal

without notice and at IBM’s sole discretion.
§ Information regarding potential future products is intended to outline our general product direction

and it should not be relied on in making a purchasing decision.
§ The information mentioned regarding potential future products is not a commitment, promise, or

legal obligation to deliver any material, code or functionality. Information about potential
future products may not be incorporated into any contract.

§ The development, release, and timing of any future features or functionality described for our
products remains at our sole discretion.

§ Performance is based on measurements and projections using standard IBM benchmarks in a
controlled environment. The actual throughput or performance that any user will experience will vary
depending upon many factors, including considerations such as the amount of multiprogramming in
the user’s job stream, the I/O configuration, the storage configuration, and the workload processed.
Therefore, no assurance can be given that an individual user will achieve results similar to those
stated here

24 hours

3234 Test Classes

Average 8 minutes

26,835 mins elapsed time

447 hours of test time

> 18 ½ parallel tests
constantly executing

0 mins of human intervention

Where we started
And why we needed to change

Process
20 year old process and virtually unchanged

Standard waterfall model

Slow and man power intensive

Expensive

Tools
In house built VM Based IDE & SCM

Lack of skills

Couldn’t support future development such as Java

Tests
Home grown test tooling across multiple frameworks

Unreliable tests – Lots of manpower to maintain

Difficult to extend

Not a scalable test runner architecture = long running tests

New Beginnings
2005 - 2009

Process Changes

§ Adoption of IBM Rational Unified Process

§ Adoption of iterative development
– CICS (4 months -> 2 months -> 1 month)
– CICS Explorer (-> 2 weeks)

§ Adoption of multi-disciplinary teams (Dev, Test, Doc, Support, Performance)

§ Adoption of Agile Artefacts (Epic, Story, tasks, burndown, prioritised backlog)

15

Tools Changes

§ Rational Team Concert
– Initially used for project & task management

§ ANTz (ANT for z/OS)
– Used for product build (75% reduction in build time)

§ Rational Team Concert
– Used to hold source code

§ Engineers adopted IDz / RDz / Eclipse

The problem with test tooling – one size does not
fit all
§ We are fairly unique:

– Thousands of test suites
– Using varied test technologies (terminal interaction, batch jobs, web services,

selenium web browser interaction) etc
– Running against z/OS and integrating with various subsystems
– 5 in service releases
– 3000 test suite invocations per 24 hours
– 600 hours of testing per 24 hour period

– No existing tool on the market satisfied all our needs, although we could learn from a
lot of them:

– Junit had an ideal extensible test framework
– OSGi / Maven provided a java architecture
– Docker provided good test isolation
– z/OSMF provided a way to talk to z/OS
– We just had to fill in the blanks …

Request made
to run a new

test

Running a test in JAT

Docker
container

started with
JAT framework

Latest test
bundle code
pulled from
artifactory

Test code
stored in RTC

Jenkins uses
maven to build

tests

Entire CICS
configuration

provisioned for
this test

Test Executed,
all logs copied
from z/OS to

database

Test
environment

de-provisioned
automatically

Tests are written in eclipse and stored in RTC.
An automated Jenkins pipeline builds the tests
and stores the OSGi bundles in an artefact
repository

Running the test framework in docker and
kubernetes adds scalability and resilience.
Each test gets it’s own logically isolated CICS
environment to test in. This adds reliability

Writing a test in JAT
//Let JAT know this is a CICS test
@CICSTest

//Provision a CICS environment
@Topology(”SingleRegion”)

//Provide some local input to the provisioned CSD
@CSDInput(file = "csdinput/LE370CSD", tag = "A")

//Compile a CICS enabled program
@CICSProgram(lang = Language.COBOL, name = "programs/oocob014.cobol")

//Add a load library to DFHRPL
@LoadLibrary(LLQ = "FV.PROGRAMS.LOAD", addHLQ = false)

//What area does this test exercise
@AreasTested(primaryArea=TestingArea.Core_Logger)

public class BasicTest{

@CICSTerminal(tag = "A")
public ITerminal terminal; //JAT inserts an object ref to a simulated terminal connected to CICS

@CICS(cicsTag = "A")
public ICICS cicsRegion; //JAT inserts an object ref allowing the test to interact with CICS

@Test
public void basicTest() throws TerminalException {

terminal.sendTextWithEnter(“CEMT”);
}

20

21

What JAT brings us

§ Error resistant way of writing tests

§ Configurations specified through annotation

§ Scalable, logically isolated, repeatable test environments

§ All diagnostic information held in one place

§ Reporting of test results

§ Reliable, performant, maintainable tests

No other test framework can provide what JAT provides

Target
Include a change set in a quality beta build within 24 hours!

Change set
delivered to

stream

Copy changes
to new RTC
workspace

Build CICS
from

workspace
Select Tests Execute Tests

Promote Code

Raise Defect

Jenkins coordinates the entire pipeline
Where possible off the shelf plugins have been used to integrate
with our chosen tools, if plugins are not available they have been
written

Pipeline is a parallel process so multiple instances can be executed
Pipeline can be triggered for any set of changes making it re-usable

pipeline

Delta or full build can
be specified based on
workspace being built

Tests are selected based upon
target stream and on CICS
changes

Automated end-to-end pipeline

Integrated Pipeline
• Every 30 mins
• Pipeline triggered for smallest set of

delivered changes
• BVT set of tests executed along with

a more intense selection based on
CICS modules changed

• If pipeline succeeds
• Changes promoted to

Integrated stream
• Stream built each night for a daily

build

Integrated Build
• Every 8 hours
• Pipeline asked to run a delta build
• Build is SMPE packaged and

installed
• SMPE package is installed
• Core Regression Tests executed

Beta Build
• Every 8 hours (+4 hrs from Integrated)
• Entire workspace is built by Ant/z (FULL)
• Build is SMPE packaged
• SMPE package is installed (DFHISTAR

and non ISTAR)
• Entire test corpus is run

CICS
Developer RTC

work space

Stream

Integrated
pipeline

Stream

Increment

Stream

Beta
pipeline pipeline

Bad changes never make it to a build, neither do they hold up good code

Automated end-to-end pipeline

Change set
delivered to

stream

Copy changes
to new RTC
workspace

Build CICS
from

workspace
Select Tests Execute Tests

Since the pipeline can be executed against any set of changes we can even run it against a
developers own RTC workspace before code is delivered

JATs scalable nature means tests are run in parallel – minimising developer wait time

Highly reliable tests reduce false positives and builds trust

All diagnostic data is available in the eclipse client for a developer

Supports TDD

Only once the developer has run shift left can they deliver their code.

Tests are selected based upon
target stream and on CICS
changes

Shift Left

I can check the UI to
see how far my new
code is progressing

through the automated
pipeline.

The CICS Automated Build, Deploy and Test Pipeline

27

In parallel to the automated pipeline, extensive overnight automated regression testing gives daily awareness of the quality of the CICS product
• More in-depth testing than the core pipeline tests. Over 1000 multi-language, multi-product test suites compared to over 500 test suites executed in the

pipeline
• JAT design enables highly parallel execution
• Stable, high quality test cases. Expectation is a 100% pass rate.
• Tests are CICS level agnostic allowing them to be run on all releases of CICS for which that test is relevant
• Test results are comprehensively displayed in a UI.

• Displays the results of the last 10 runs upfront, with details of the last 100 runs also available.
• Allows teams to create collections of tests. Teams can create “collections” of tests to view test results in anyway they wish e.g. by Hill, by

Functional Area etc.
• Enables a collection of tests to be created for each Hill

Implemented an Automated Pipeline for regression testing of PTF fixes.
• One click of a button to initiate building and packaging of a PTF, deploying CICS, running automated tests, automated submit to the PTF distribution

centre.
• Only requires human interaction if a problem is found.

28

Automated pipeline testing

29

Build notifications in Slack

So why tell you all this

Why am I telling you this

§ To demonstrate the art of the possible

§ To show the amount of testing we perform for CICS

§ To understand how mature your testing infrastructure is

§ To understand the appetite if we were to open source JAT and make it freely available
– Yes we are seriously considering this

Summary

Summary

§ Testing CICS ≈ Testing CICS applications

§ In CICS we have a 1st Class Test framework we believe is the best in the world

§ We really want to share this with you

§ Interested?

wyates@uk.ibm.com

