
The New CICS Asynchronous API
Pradeep Gohil

Async API Technical lead
IBM UK

November 2018
Session GK

Please note…

IBM’s statements regarding its plans, directions, and intent are subject to change or
withdrawal without notice at IBM’s sole discretion.

Information regarding potential future products is intended to outline our general product
direction and it should not be relied on in making a purchasing decision.

The information mentioned regarding potential future products is not a commitment,
promise, or legal obligation to deliver any material, code or functionality. Information about
potential future products may not be incorporated into any contract.

The development, release, and timing of any future features or functionality described for
our products remains at our sole discretion.

Performance is based on measurements and projections using standard IBM benchmarks in a
controlled environment. The actual throughput or performance that any user will experience
will vary depending upon many factors, including considerations such as the amount of
multiprogramming in the user’s job stream, the I/O configuration, the storage configuration,
and the workload processed. Therefore, no assurance can be given that an individual user
will achieve results similar to those stated here.

2

Agenda

1. Motivation for introducing the new
CICS asynchronous API

2. Fundamentals of asynchronous processing for Application
Developers

3. Control and management of asynchronous processing for
System Programmers

3

Make better use of your time

Could you do something more useful than waiting
for a service call to return?

• Growing number of callable services
• Pressures to reduce application response times
• Greater resilience against unreliable services

4

What are customers attempting today?

5

What are customers attempting today?

6

• No single clear solution

• Homegrown frameworks integrating different technologies together

• Difficulties with timing windows

• Require clean up transactions and ongoing management

• High cost of development and ongoing maintenance skills

What are customers attempting today?

7

“Our current "solution in place" stinks but is just better than nothing.
IBM's solution needs to be better than ours but little imagination is
needed to believe that will be the case. ”

“It would be difficult to implement my own solution...”

“Whilst a solution is in place, none are optimal.
Plenty of room to reduce missed sales opportunities”

“Asynchronous processing is quite alien to most application
developers so you'll need a good way to handle this”

Features of the Asynchronous API

8

Parent-Child Separate UoW

Local childrenRUN TRANSID

FETCH CHILD FETCH ANY

FREE CHILD
Management

Policy

Channel &
Containers

Timeouts

Monitoring
& Statistics

Task termination

Transaction Tracking

JCICS

Parent – Child relationship

9

Parent Child Child 2

CICS Region

Aspects of asynchronous processing

10

PARENT CHILD

Three Key Aspects
1. Run transaction asynchronously
2. Fetch child completion
3. Pass data safely

Features of the Asynchronous API

11

Parent-Child Separate UoW

Local childrenRUN TRANSID

FETCH CHILD FETCH ANY

FREE CHILD
Management

Policy

Channel &
Containers

Timeouts

Monitoring
& Statistics

Task termination

Transaction Tracking

JCICS

Run transactions asynchronously

RUN TRANSID (transaction)
CHILD (identifier)

“I need a credit check but I can get
on with some other work whilst I
wait for the results”

12

PARENT CHILD

Fetching child completion – Two new
commands

FETCH CHILD(in-identifier)

“I cannot continue processing the
parent coordinator, until I have received
confirmation from CHILD3”

13

PARENT CHILD1 CHILD2 CHILD3 PARENT CHILD1 CHILD2 CHILD3

FETCH ANY(out-identifier)

“I want to maximise the response time
savings”
“I only need the first one to reply”

Use case: Extending applications whilst
minimizing impact to response time

14

Existing business logic: Extend with new service provider:

ACCTPTNR

Use case: Extending applications whilst
minimizing impact to response time

15

Typical solution: Logic added asynchronously:

“Adding an outgoing call without affecting response time?
Sounds impossible.”

Passing data

CICS Channels and Containers
(not COMMAREA)

16

Use case: Extending applications whilst
minimizing impact to response time – Revisited!

17

Typical solution: Logic added asynchronously:

“Adding an outgoing call without affecting response time?
Sounds impossible.”

Use case: Extending applications whilst
minimizing impact to response time – Revisited!

© Copyright IBM Corporation 2018 18
https://github.com/cicsdev/cics-async-api-redbooks/compare/start-of-3...end-of-3

https://github.com/cicsdev/cics-async-api-redbooks/compare/start-of-3...end-of-3

Features of the Asynchronous API

19

Parent-Child Separate UoW

Local childrenRUN TRANSID

FETCH CHILD FETCH ANY

FREE CHILD
Management

Policy

Channel &
Containers

Timeouts

Monitoring
& Statistics

Task termination

Transaction Tracking

JCICS

FREE CHILD: Useful for long-running parents

We keep child state information (just in case you ask for it later)

Ability to disassociate parent from child
App dev can DELETE CHANNEL for already FETCHed results

20

FREE CHILD: Sets of service calls

21

FREE CHILD: Sets of service calls

22

FREE CHILD: Sets of service calls

23

Features of the Asynchronous API

24

Parent-Child Separate UoW

Local childrenRUN TRANSID

FETCH CHILD FETCH ANY

FREE CHILD
Management

Policy

Channel &
Containers

Timeouts

Monitoring
& Statistics

Task termination

Transaction Tracking

JCICS

Don’t want to wait forever!

Don’t want to wait forever!

26

FETCH ANY
>>-FETCH--ANY(data-area)--+--------------------+---------------->

'-CHANNEL(data-area)-'
>--COMPSTATUS(cvda)--+-------------------+---------------------->

'-ABCODE(data-area)-'
>--+---------------------+-------------------------------------><

+-NOSUSPEND-----------+
'-TIMEOUT(data-value)-'

* TIMEOUT(0) means that timeout is not being set

Use case: Developing robust CICS applications
with unreliable service providers

27

Use case: Developing robust CICS applications
with unreliable service providers

28

RUN TRANSID

RESP CODES:

CHANNELERR
INVREQ
TRANSIDERR
NOTAUTH
DISABLED

RUN TRANSID

>>-RUN--TRANSID(name)--+---------------+--CHILD(data-area)-----><
'-CHANNEL(name)-'

FETCH CHILD

FETCH CHILD

>>-FETCH--CHILD(data-value)--+--------------------+------------->
'-CHANNEL(data-area)-'

>--COMPSTATUS(cvda)--+-------------------+---------------------->
'-ABCODE(data-area)-'

>--+---------------------+-------------------------------------><
+-NOSUSPEND-----------+
'-TIMEOUT(data-value)-'

COMPSTATUS: RESP CODES:

ABEND NOTFINISHED
NORMAL INVREQ
SECERROR

FETCH ANY

FETCH ANY

>>-FETCH--ANY(data-area)--+--------------------+---------------->
'-CHANNEL(data-area)-'

>--COMPSTATUS(cvda)--+-------------------+---------------------->
'-ABCODE(data-area)-'

>--+---------------------+-------------------------------------><
+-NOSUSPEND-----------+
'-TIMEOUT(data-value)-'

COMPSTATUS: RESP CODES:

ABEND NOTFINISHED
NORMAL INVREQ
SECERROR NOTFND

Features of the Asynchronous API

32

Parent-Child Separate UoW

Local childrenRUN TRANSID

FETCH CHILD FETCH ANY

FREE CHILD
Management

Policy

Channel &
Containers

Timeouts

Monitoring
& Statistics

Task termination

Transaction Tracking

JCICS

JCICS variant of Asynchronous API commands
To complement a Java style of coding

33

import java.util.concurrent.Future;
import com.ibm.cics.server.AsyncService;
import com.ibm.cics.server.AsyncServiceImpl;

AsyncService async = new AsyncServiceImpl();

Future<ChildResponse> loanRate = null;
loanRate = async.runTransactionId(getLoanTran, myChannel);

…

ChildResponse returnedLoanRate = null;
returnedLoanRate = loanRate.get(500, TimeUnit.MILLISECONDS);

if
(returnedLoanRate.getCompletionStatus().equals(CompletionStatus.NORMAL))

{
…

}

JCICS Implementation

• Standard Java: Future interface
• Familiar to Java programmers
• Complete EXEC CICS functionality
• Interfaces and implementations to allow for mocking

© Copyright IBM Corporation 2018 35

Features of the Asynchronous API

36

Parent-Child Separate UoW

Local childrenRUN TRANSID

FETCH CHILD FETCH ANY

FREE CHILD
Management

Policy

Channel &
Containers

Timeouts

Monitoring
& Statistics

Task termination

Transaction Tracking

JCICS

• Emergency Brake

• Control dispatching of asynchronous tasks
• Protect CICS rather than to optimise throughput
• Prevent flooding the CICS system
• Managed by the CICS system

37

CICS automated control

Security

Security context for child inherited from parent

38

Transaction Classes

Control your systems!

ü

39

DO have transaction classes

DO NOT put parents and children in the same transaction class

Dumps

•New CICS ‘AS’ domain provides enhancements to
• Systems dumps

• Transaction dumps

40

Monitoring and Statistics

Asynchronous services

RUN commands. : 4,026

FETCH commands. : 11

FREE commands : 0

Current active children : 0

Peak active children. : 7

Times RUN commands being delayed. . : 744

Current parents being delayed . . . : 0

Peak parents being delayed. : 1

41

Transaction Tracking

42

PTCOUNT(data-area)
PTSTARTTIME(data-area)
PTTASKID(data-area)
PTTRANSID(data-area)

Features of the Asynchronous API

43

Parent-Child Separate UoW

Local childrenRUN TRANSID

FETCH CHILD FETCH ANY

FREE CHILD
Management

Policy

Channel &
Containers

Timeouts

Monitoring
& Statistics

Task termination

Transaction Tracking

JCICS

Async Requests Policy

© Copyright IBM Corporation 2018 44

Search CICS Asynchronous API
Articles, IBM Knowledge Center, Example code

45

github.com/cicsdev developer.ibm.com/cics/category/asynchronous-api/

Available NOW!

46

Fully detailed examples on how to achieve:

• Enhanced functionality

• Reduced Response Times

• Greater Robustness

Examples in COBOL and Java on GitHub

https://github.com/cicsdev/cics-async-api-redbooks

Tips and Tricks on interesting ways to use the API

Detail about performance and monitoring

Download here:

http://www.redbooks.ibm.com/abstracts/sg248411.html?

Open

https://github.com/cicsdev/cics-async-api-redbooks
http://www.redbooks.ibm.com/abstracts/sg248411.html?Open

In a sentence? Using asynchronous processing to achieve large scale I/O in minimal time
Last update: July 2018

Made with Z Stories: Walmart, North America

THE BIG IDEA TAKING ACTION RESULT!

Walmart’s customer-facing application provides
search results for key events from big data. Their
challenge is to reduce an average 2 minute
response time, to meet an SLA of … just 1 second!

Walmart’s global distributed platform generates
and records 500M events per day, driving over
1000 tps on Z. This large data is interrogated by a
sophisticated search mechanism with response
time averages of 2 minutes.

Harnessing the I/O processing capabilities on Z,
Walmart undertook a project to transform a
serially-executing search algorithm and utilized
asynchronous programming techniques to
dramatically reduce the response time.

Walmart’s serially executing search algorithm was
benchmarked at 5,000 file reads/sec.
Using native VSAM on Z saw an increase to
60,000 reads/sec. Though this still wasn’t good
enough.

Appreciating the bottleneck on File I/O, Walmart
leveraged the CICS Asynchronous API to spread the
file operations across numerous tasks. Run
concurrently, these tasks were able to achieve truly
high volume transaction rates and increase I/O
capabilities.

Employing the CICS Asynchronous API, Walmart
greatly simplified the complexity of writing their own
homegrown asynchronous patterns. Reducing the
maintenance overhead and lines-of-code, they also
improved the application’s fault tolerance and
resilience.

Walmart were very impressed with their enhanced
complex-search capabilities. They transformed an
application capable of 5,000 reads/sec to
700,000 reads/sec, by employing asynchronous
processing techniques.

They remarked “It just would not have met the SLA
doing it serially”. Coupled with the CICS
Asynchronous API, they added:

“This is really a cool service… all we’re doing is
using what CICS has given us; we’re just doing it in a
creative way.”

We want your feedback!

• Please submit your feedback online at ….
Øhttp://conferences.gse.org.uk/2018/feedback/gk

• Paper feedback forms are also available from the Chair person

• This session is GK

