

Know Your Onions When it
Comes to Db2 Indexes
Randy Bright

BMC Software, Inc.

November 7, 2018

Session IJ – 09:30-10:30

https://twitter.com/gseukc
https://twitter.com/gseukc
https://www.linkedin.com/groups/1741877
https://www.linkedin.com/groups/1741877
https://www.facebook.com/pages/Guide-Share-Europe-UK-Region/174907039241415
https://www.facebook.com/pages/Guide-Share-Europe-UK-Region/174907039241415

Agenda
• Fundamentals

• Header Page, Space Map, Directory Page, Non-Leaf Page, Leaf Page

• Page Header, Header Page, Space Map
• Bits and Bytes

• Leaf Pages
• Bits and Bytes

• What Happens with SQL

• Non-Leaf Pages
• Bits and Bytes

• Their Purpose

Header Pages, Page Headers, and Space Maps

• There is only one Header Page.

• Header page is always page zero.

• The first x’3E’ bytes are the Header
Page Page Header.
• Remember, all pages contain a Page

Header, even the Header Page.

• Beyond that, this page has tons of
information about this object.

• I’m not going to take the time to list
every bit of information in the Header
Page and where it is, but it includes
things like…

The Header page
Page Header (x’3E’)

Page Tail (x’14’) (Assumes Extended LRSN)

All kinds of additional information

• The STOGROUP name.

• The VCAT name.

• Recovery information.

• Flags that indicate:
• It is partitioned or not.

• It contains variable length keys or not.

• It has unique keys or not.

• It is a DPSI or not.

• It is compressed or not.

• Keys contain included columns or not.

• And much more in the Diagnosis Guide.

The Header page
Page Header (x’3E’)

Page Tail (x’14’) (Assumes Extended LRSN)

All kinds of additional information

Page Header (x’3E’)

Page Tail (x’14’) (Assumes Extended LRSN)

Not to be confused with the
Header Page.
• Every page has a Page Header and

Page Tail
• For this presentation I will concentrate

on the Extended LRSN Page Tail.

• Both the Page Header and Page Tail
contain pretty much the same
information regardless of page type.
• With IBM there are always exceptions.

• One exception is the Directory Page.

The Page Header (and Page Tail)

Page Header (x’3E’)

Information contained in the Page Header:
• +x’00’ – PGCOMB, is one byte of flags:
• b’1...’ – This bit says the page was read with an I/O error.

• b’.1..’ – Page was modified by the REPAIR Utility.

• b’...1’ – Last byte of the page is x’52’ (otherwise x’42’).

Or x’D5’ or x’C5’ if not Extended LOGRBA/LRSN

• b’.... ...1’ – Page was copied by DSN1COPY.

A much closer look at the Page Header.
PGCOMB

Page Header (x’3E’)

Information contained in the Page Header:
• +x’01’ – PGLOGRBA, is the 6-byte LOG RBA of the last update.
• Not used when the LOGRBA/LRSN is Extended format (more later).

• +x’07’ – PGNUM, is the 4-byte page number.
• Page numbers are a whole wealth of information by themselves.

• +x’0B’ – PGFLAGS, another byte of flags:
• b’1...’ – Means this page contains inconsistent data.

• b’..11 11..’ – A combination of these bits indicates this is a Header Page
• Header Page in a segmented page set, non-segmented page set, index page set, etc.

A much closer look at the Page Header.
PGLOGRBA PGNUM PGFLAGSPGCOMB

Page Header (x’3E’)

Information contained in the Page Header:
• +x’0C’ – HPGDBID, is the 2-byte DBID of this object.

• +x’0E’ – HPGPSID, is the 2-byte OBID or ISOBID.

• +x’10’ – HPGHPREF, is the 4-byte highest formatted page number.

That is enough for now. More Page Header specifics as we
talk about contents of pages.

A much closer look at the Page Header.
DBID PSID

HPGHPREF
PGLOGRBA PGNUM PGFLAGSPGCOMB

• I say “the” Space Map, but there can
be more than one.

• The first Space Map is always page
number 1 (the second page).

• The Space Map Page Header is
shorter than the normal Page
Header for other pages.
• Additional information is not needed.

• More room for Space Map Entries.

The Space Map
Page Header (x’1C’)

Page Tail (x’14’) (Assumes Extended LRSN)

Space Map Entries

• At offset x’14’ is the number of
pages covered by this Space Map.
• Multiply the number of this Space Map

by this number and add one to get the
next Space Map page number.

• This works for every Space Map.
• Well, almost.

• For index Space Maps it is pretty consistent.

The Space Map
Page Header (x’1C’)

Page Tail (x’14’) (Assumes Extended LRSN)

Space Map Entries

• The space map contains:

• A half-byte of flags for each page
addressed.

• These half-byte page entries tell:
• If the page is used.

• If the page is empty.

• If the page is possibly uncommitted.

The Space Map
Page Header (x’1C’)

Page Tail (x’14’) (Assumes Extended LRSN)

Space Map Entries

Leaf Pages

Page Header (x’3E’)

Page Tail (x’14’) (Assumes Extended LRSN)

Free Space
(x’0FAE’ for a 4K page)

(x’1FAE’ for an 8K page)
(x’3FAE’ for a 16K page)
(x’7FAE’ for a 32K page)

Non-extended LRSN uses a two byte “tail”.
So you have x’12’ more bytes free per page.
But, everything should be going to Extended
LRSN format, so I’m using the “BIGTail” in all

my examples.

This is what an empty page looks
like.
• It has a Page Header.
• Page Header for an index leaf page is

always x’3E’ in size (62 bytes).

• It has a Page Tail.
• Page Tail for an index leaf page is always

x’14’ in size (20 bytes).

• In an empty 4K page, free space is
always x’0FAE’ in length (4014
bytes).

• Other page sizes still have the same
size Page Header and Page Tail,
leaving more space for keys.

What does an “empty” index page look like?

Page Header (x’3E’)

More information contained in the Index Page Header:
• +x’14’ – IPIXID, is the 2-byte OBID of this index.

• +x’16’ – IPFLAGS, a byte of flags.
• b’1...’ – Means this is the Root Page.

• b’.1..’ – Means this is a Leaf Page.

• b’..1.’ – Means this is a parent of a leaf page.

• b’...1’ – Means this index is defined UNIQUE WHERE NOT NULL

Now More Page Header Information.
IPIXID IPFLAGS

Page Header (x’3E’)

More information contained in the Page Header:
• +x’16’ – IPFLAGS, a byte of flags (continued).
• b’.... 1...’ – Means this index is defined non UNIQUE.

• b’.... .1..’ – Means this index is defined NOT PADDED.

• b’…. ..1.’ – Means this index has had a structure modification.

• b’.... ...1’ – Means all data on this index has been committed.

• +x’17’ – Another byte of flags, but I’m not going into detail.

Now More Page Header Information.
IPFLAGSIPIXID

Page Header (x’3E’)

More information contained in the Page Header:
• +x’18’ – IPNKEYS, is a 2-byte count of keys on this page.

• +x’1A’ – IPFREESP, is a 2-byte number of free bytes on this page.

• +x’1C’ – IPFREEP, is a 2-byte offset to contiguous free space.

• [some other stuff]

• +x’24’ – IPPRNTPG, four byte page number of the parent of this page.

• [more stuff]

• +x’30’ – IPLNXTPG, four byte page number of the next leaf page.

• +x’34’ – IPLPRVPG, four byte page number of the previous leaf page.

Now More Page Header Information.
IPNKEYS IPFREESP IPFREEP

IPPRNTPG
IPLNXTPG IPLPRVPG

IPFLAGSIPIXID

What is meant by “next”, “previous”, and “parent”?

• Leaf Pages, and Non-Leaf Pages, for that matter, are
“linked” in key sequence.

• All of the keys on a page must be in sequential order.

• This means if you find the “logical” first Leaf Page, read the
keys from it in physical sequence, go to the “next” page and
read its keys in physical sequence, etc., you will get all the
keys in the index in sequence.

• No need to sort.

Now is a good time for more information…

What is meant by “next”, “previous”, and “parent”?

• Likewise, if you find the logical last page in an index, read
its keys backwards, and go to the previous page and do the
same, etc. you will get all the keys in reverse sequence.

• Done less often, but can still be done.

• “Parent” refers to the Non-Leaf Page that points to this Leaf
Page. We will explain more about Non-Leaf Pages later.

• For now, back to the page contents.

Now is a good time for more information…

Page Header (x’3E’)

Page Tail (x’14’) (Assumes Extended LRSN)

ID Map Area (Length Varies)

Key Data (Length Varies)

(Some free space may be “scattered””
within the Key Data)

Free Space (Length Varies)

This could be a “typical” page.
• The Page Header and Page Tail are

still present (in blue).

• Keys (in yellow) begin immediately
after the Page Header.

• At the bottom of the page is the ID
Map (in green).

• Between the Keys and the ID Map is
free space where new Keys can be
inserted.

• Some free space may be
interspersed within the Key area.

What does a “typical” page look like?

Page Header (x’3E’)

Page Tail (x’14’) (Assumes Extended LRSN)

Free Space

ID Map Area (Length Varies)

enough to hold an entire Key)

Key Data (Length Varies)

(There may be some free space within
the Key Data, but it may not be large

This is a full page.
• Notice the Keys (in yellow) and the

ID Map (in green) have grown to
almost no free space.

• Typically there is a small amount of
free space, but not enough to hold a
Key.

• So the page is “logically” full.

What does a “full” page look like?

This is leading to probably the most important piece of
information I will provide today.

• REORG YOUR INDEXES!

• Now we will get into why…

This boring information does lead somewhere…

Page Splits Page Splits

Page Header (x’3E’)

Page Tail (x’14’) (Assumes Extended LRSN)

Free Space

ID Map Area (Length Varies)

Key Data (Length Varies)

Good question!
• Remember, the Keys on a page must

be in order and the pages must be in
order by Key.

• So how do you fit a new Key that is
bigger than the free space on the
page?
• First Db2 will “gather” all the scattered

free space from the Key area.

• If there is still not enough space, then
the page is “split”.

So what happens when you INSERT a key?

When no new Keys will fit on a
page, Db2 “splits” that page.
• First Db2 goes to the “physical

center” of the Key area.

• For a 4K page, that is offset x’0815’.

• If the physical center is within a key
(and it probably is), then Db2 finds
the “logical center” of the page.
• The logical center is at the end of the key

if the physical center is beyond the
center of the key.

• Otherwise it is the beginning of the key.

So what is a page split?
Page Header (x’3E’)

Page Tail (x’14’) (Assumes Extended LRSN)

Free Space

ID Map Area (Length Varies)

Key Data (Length Varies)

Free Space

ID Map Area (Length Varies)

Now that we have the center of
the Key Data, the split occurs.
• The “bottom” half of the Key Area is

removed.

• And free space now replaces the
area where the keys once were.

• Oh No! What happened to all those
keys?

• Not to worry, they aren’t gone.

What is a “page split”?
Page Header (x’3E’)

Page Tail (x’14’) (Assumes Extended LRSN)

Key Data (Length Varies)

ID Map Area (Length Varies)
Free Space

A new page is created.
• All the keys from the bottom half of

the split page are moved here.
• If the page was split “before” the

inserted key, it is on this new page.

• If the split was “after” the new key, it will
be on the page that was split.

• Free space is now approximately
half the new page.

What is a “page split”?
Page Header (x’3E’)

Page Tail (x’14’) (Assumes Extended LRSN)

Free Space

ID Map Area

But where does this new page go?
• Starting with the page that was split, Db2 looks “forward” up to 127

pages for an empty page.
• If it finds one, it puts the new page there.

But where does this new page go?
• Starting with the page that was split, Db2 looks “forward” up to 127

pages for an empty page.
• If it finds one, it puts the new page there.

• If not found looking forward, it looks “backward” up to 128 pages.
• If it finds one, it puts the new page there.

But where does this new page go?
• The odd part is, it will always look forward before it looks backward.

• An empty page might be right behind you, but it is not seen unless the 127
pages after the split page are searched and no empty page is found.

• Now we can talk about the major reason to REORG an index.
• REORGLEAFNEAR and REORGLEAFFAR in SYSIBM.SYSINDEXSPACESTATS.

So why should I worry about this?
• Remember Leaf Pages must be maintained in logical sequential order.

• That means the IPLNXTPG must point to the page with the next higher key.

• And the IPLPRVPG must point to the page with the next lower key.

• So let’s go back to this scenario.
• After we have inserted a key, split a page, and used an empty page for the

lower half of the split page.

So why should I worry about this?
• Because now this is what the IPLNXTPG pointers look like.

So why should I worry about this?
• Guess what happens if you INSERT a key that needs to go into this

page and there is no room?

• Yep, this is how the forward pointer search goes.

• Now, multiply that times 1,000 page splits. 10,000 page splits,
100,000 page splits.

So why should I worry about this?
• This is what is known as REORGLEAFFAR. From the manual:

The net number of leaf pages located physically far away from previous leaf pages for
successive active leaf pages that occurred since the last REORG, REBUILD INDEX, or LOAD
REPLACE, or since the object was created.

The distance between leaf pages is optimal if the difference is 1 and considered far if the
distance is greater than 16.

• That’s clear, isn’t it?
• Basically, if the IPLNXTPG pointer points to a page more than 16 pages away,

REORGLEAFFAR is incremented.
• Which means most page splits will increment by two – one for the distance to

the new page, and one for the distance back to the original next page.

So why should I worry about this?
• There is also REORGLEAFNEAR. From the manual:

The net number of leaf pages located physically near previous pages for successive active leaf
pages that occurred since the last REORG, REBUILD INDEX, or LOAD REPLACE, or since the
object was created.

The distance between leaf pages is optimal if the difference is 1 and considered near if the
distance is 2-16.

• That’s clear, isn’t it?
• Basically, if the IPLNXTPG pointer points to a page between 2 and 16 pages

away, REORGLEAFNEAR is incremented.
• Which means most page splits will increment by two – one for the distance to

the new page, and one for the distance back to the original next page.

Non-Leaf Pages

Page Header (x’3E’)

Page Tail (x’14’) (Assumes Extended LRSN)

ID Map Area (Length Varies)

Key Data (Length Varies)

(Some free space may be “scattered””
within the Key Data)

Free Space (Length Varies)

Amazingly like a Leaf Page.
• The Page Header and Page Tail are

still present (in blue).

• Keys (in yellow) begin immediately
after the Page Header.

• At the bottom of the page is the ID
Map (in green).

• Between the Keys and the ID Map is
free space where new Keys can be
inserted.

• Some free space may be
interspersed within the Key area.

What does a Non-Leaf Page look like?

Page Header (x’3E’)

Page Tail (x’14’) (Assumes Extended LRSN)

ID Map Area (Length Varies)

Key Data (Length Varies)

(Some free space may be “scattered””
within the Key Data)

Free Space (Length Varies)

• The index Root Page is always page
2 (the third page in the index).

• What is the “Root Page”?
• It is the “first” Non-Leaf Page.

• Or the “highest level”.

• It is always in the same place (page 2) so
Db2 can find it easily.

• It is how Db2 finds all of the keys in the
index.

• More later…

What is the index Root Page?

Page Header (x’3E’)

Page Tail (x’14’) (Assumes Extended LRSN)

ID Map Area (Length Varies)

Key Data (Length Varies)

(Some free space may be “scattered””
within the Key Data)

Free Space (Length Varies)

• All the same processes and
problems exist for Non-Leaf Pages as
Leaf Pages regarding page splits.

• It is possible when a Leaf Page splits
that the Non-Leaf Page will also
have to split. Specifically if PCTFREE
is zero.

• Non-Leaf Pages search for a free
page to be used just as Leaf Pages
do.

What does a Non-Leaf Page look like?

Page Header (x’3E’)

Page Tail (x’14’) (Assumes Extended LRSN)

ID Map Area (Length Varies)

Key Data (Length Varies)

(Some free space may be “scattered””
within the Key Data)

Free Space (Length Varies)

• Each key entry in a Non-Leaf Page
has a pointer to a page within the
index and the highest key value on
that page.

• A Db2 Index is basically a binary
tree.

• There are always at least two
“levels”.
• The Non-Leaf level and the Leaf level.

• Additional levels are added as needed.

• See the next slides.

What does a Non-Leaf Page look like?

Index Levels
Root

Key/Pg# Key/Pg# Key/Pg# Key/Pg#

Leaf

Key/RID Key/RID Key/RID Key/RID

Leaf

Key/RID Key/RID Key/RID Key/RID

Leaf

Key/RID Key/RID Key/RID Key/RID

Leaf

Key/RID Key/RID Key/RID Key/RID

This is a three-level index
Root

Key/Pg# Key/Pg# Key/Pg# Key/Pg#

Non-Leaf

Key/Pg# Key/Pg# Key/Pg# Key/Pg#

Non-Leaf

Key/Pg# Key/Pg# Key/Pg# Key/Pg#

Non-Leaf

Key/Pg# Key/Pg# Key/Pg# Key/Pg#

Non-Leaf

Key/Pg# Key/Pg# Key/Pg# Key/Pg#

Leaf

Key/RID Key/RID Key/RID Key/RIDLeaf

Key/RID Key/RID Key/RID Key/RIDLeaf

Key/RID Key/RID Key/RID Key/RIDLeaf

Key/RID Key/RID Key/RID Key/RID

Leaf

Key/RID Key/RID Key/RID Key/RIDLeaf

Key/RID Key/RID Key/RID Key/RIDLeaf

Key/RID Key/RID Key/RID Key/RIDLeaf

Key/RID Key/RID Key/RID Key/RID

How does Db2 Use an Index?
Root

Key/Pg# Key/Pg# Key/Pg# Key/Pg#

Non-Leaf

Key/Pg# Key/Pg# Key/Pg# Key/Pg#

Non-Leaf

Key/Pg# Key/Pg# Key/Pg# Key/Pg#

Non-Leaf

Key/Pg# Key/Pg# Key/Pg# Key/Pg#

Non-Leaf

Key/Pg# Key/Pg# Key/Pg# Key/Pg#

Leaf

Key/RID Key/RID Key/RID Key/RIDLeaf

Key/RID Key/RID Key/RID Key/RIDLeaf

Key/RID Key/RID Key/RID Key/RIDLeaf

Key/RID Key/RID Key/RID Key/RID

Leaf

Key/RID Key/RID Key/RID Key/RIDLeaf

Key/RID Key/RID Key/RID Key/RIDLeaf

Key/RID Key/RID Key/RID Key/RIDLeaf

Key/RID Key/RID Key/RID Key/RID
Tablespace Data Page

Row Row Row Row

Now we ride off into the west Texas Sunset

We want your feedback!
• Please submit your feedback online at ….

http://conferences.gse.org.uk/2018/feedback/IJ

• Paper feedback forms are also available from the Chair person

• This session is IJ

GSE UK Conference 2018
Better, stronger, faster; The Mainframe….. the Machine!

Tuesday 6th November

Start End Stream Room Title Speaker

11:45 12:45 IMS Wellington B The No Cost Way to Manage the IMS Catalog David Schipper

15:00 16:00 IMS Wellington B Current Trends in IMS Analytics David Schipper

16:30 17:30 zCMPA Woodcote zIIP stealing GCP MSUs for Capacity Management Donald Zeunert

Wednesday 7th November

Start End Stream Room Title Speaker

09:30 10:30 Db2 Nurburgring Know your onions when it comes to Db2 indexes Randy Bright

09:30 10:30 IMS Wellington B IMS Checkpoint Pacing David Schipper

10:45 11:45 zCMPA Woodcote How many GCP MSU is my CF stealing? Donald Zeunert

https://twitter.com/gseukc
https://twitter.com/gseukc
https://www.linkedin.com/groups/1741877
https://www.linkedin.com/groups/1741877
https://www.facebook.com/pages/Guide-Share-Europe-UK-Region/174907039241415
https://www.facebook.com/pages/Guide-Share-Europe-UK-Region/174907039241415

