
zOS Data Collection for
Capacity Management

GSE UK

Sessions LA LB LC LD

EPV Performance University 1

Agenda

9:30 - SMF records and more
11:00 - coffee break
11:30 - zParser data collection architecture
12:00 - zParser basic processing
12:30 - zParser advanced processing
13:00 - lunch
14:30 - Processing controls
15:00 - Data recovery
15:30 - coffee break
16:00 - zParser for Big Data
16:30 - end of day

EPV Performance University 3

SMF records

EPV Performance University 4

SMF records - Overview

• System Management Facility (SMF) is a base
component of z/OS

• It provides a set of macros used by subsystems and
applications to pass records to the SMF address
space for recording into SMF records

• Each record is identified by a one-character record
type (hex value ‘00’ to ‘FF’) between 0 and 255

• IBM has exclusive use of record types 0 through 127

• Third part software and user applications may use
128 to 255

EPV Performance University 5

SMF records - Overview

• Extended SMF records in z/OS 2.3

• SMF will now support 2048 unique record types

– Types 0-127 and 1152-2047 are reserved for IBM

– Types 128-1151 are available for use external to IBM

• SMFPRMxx: no change in the TYPE option default of
TYPE(0:255)

• SMF dump utilities (IFASMFDP and IFASMFDL): new
default of TYPE(0:2047)

EPV Performance University 6

SMF records - Overview

• EPV zParser supports:

– All SMF “standard” records (0-127)

– Many “user” SMF records (128-255)

– IMS logs, DCOLLECT and BVIR records are also supported

– CSV files

• Other “user” SMF records are supported on request;
customers have to provide some data for testing;
record layout information should be available

• Extended SMF records support in development

EPV Performance University 7

SMF records - Overview

• Several of the record types also have subtypes to
identify unique types of records (e.g. SMF 30)

• SMF records layout is complex and not human
readable; it is described in the SMF manual but the
specific layout of some important records (CICS, Db2,
etc) is not provided; you get only reference such as:

CICS Transaction Server for z/OS writes record type 110 to record
transaction data collected at event monitoring points. For more
information about record type 110, see the customization
documentation available at the following URL:
http://www-01.ibm.com/software/htp/cics/library/
From MVS System Management Facilities (SMF)

EPV Performance University 8

http://www-01.ibm.com/software/htp/cics/library/

SMF records - Overview

• Most important SMF records for Performance
Analysis:

 SMF 30 records for Address Spaces

 RMF (CMF) records 70-78

 SMF 113

 SMF 110 for CICS, 100-102 for Db2, 120 for WebSphere,
115-116 for MQ

• Very good SMF reference available on Cheryl
Watson’s web site
http://watsonwalker.com/publications/

EPV Performance University 9

http://watsonwalker.com/publications/

SMF records - Overview

• Not all the relevant information for z/OS
performance analysis are written to SMF; major
exceptions are:

 IMS transactions information which are written to the IMS
log

 Disk space information which can be collected by running
IDCAMS with the DCOLLECT parameter

 IBM VTS information which can be collected via the Bulk
Volume Information Retrieval (BVIR) function

EPV Performance University 10

SMF records - Parameters

• All the SMF parameters are set in the SMFPRMxx
member of SYS1.PARMLIB

• For a record type and subtype to be written it
has to be allowed in the TYPE sub-parameter
under the SYS or SUBSYS parameters
 SYS (… TYPE(0:255) …)

 SYS (… TYPE(0:100, 101(0), 102,110,115:120) …)

EPV Performance University 11

SMF records - Parameters

• Other SMFPRMxx parameters influencing the
content and the format of SMF records:
 INTVAL, SYNCVAL, INTERVAL (to be discussed later)

 EMPTYEXCPSEC; to suppress empty EXCP sections in SMF
30; default is NOSUPPRESS

 DDCONS; to consolidate duplicate EXCP sections in SMF 30
records (same DD and address); default is YES; you should
change it to NO

 SMF30COUNT; to write instructions counters in SMF 30;
default is NOSMF30COUNT

EPV Performance University 12

SMF records – New parameters

• NOCOMPRESS | COMPRESS[(PERMFIX(nnnnM))]

– COMPRESS is an optional parameter. When specified
with a zEDC Express feature available, SMF
compresses SMF records before writing to the log
stream; log stream only

– PERMFIX is an optional parameter when COMPRESS is

specified; it specifies the default amount of storage
that SMF can keep permanently fixed for
communicating with zEDC

–Default: NOCOMPRESS, NOPERMFIX

EPV Performance University 13

SMF records – New parameters

• NORECSIGN |
RECSIGN(HASH(SHA1|SHA256|SHA384|SHA512),
SIGNATURE(RSA|ECDSA),TOKENNAME(tokenname))

– Specifies whether SMF is to digitally sign the records
that are being recorded for the log stream; log stream
only

– If RECSIGN is specified, the HASH, TOKENNAME, and
SIGNATURE keywords must also be specified

–Default: NORECSIGN

EPV Performance University 14

SMF records – New parameters

• The steps needed to set up and use digitally signed
SMF records are:

– Create the public/private key pair

– Update the SMFPRMxx member of parmlib to specify that
you want SMF to sign records

– Use the IFASMFDL dump program to carry signature
records to data sets (default: SIGSTRIP)

– Use the IFASMFDP dump program to carry signature
records to data sets and validate records (default:
SIGSTRIP, NOVALIDATE)

See “SMF Digital Signatures in zOS 2.2”

EPV Performance University 15

SMF records – New parameters

• INMEM(rname,RESSIZMAX({nnnnM|nG}),{TYPE({aa,b
b|aa,bb:zz|aa,bb:zz,...})|NOTYPE({aa,bb|aa,bb:zz|aa
,bb:zz,...})}

– Defines an in-memory resource to record SMF records in
memory for real-time processing; log stream only

– A maximum of 32 in-memory resources is supported

– Record types specified on an INMEM parameter are not
written to the default logstream; if you want certain
record types to be written also to a logstream, specify
those record types on both an LSNAME parameter

• Default: none
EPV Performance University 16

SMF records – New parameters

• rname

– Name of the in-memory resource. The resource name
must begin with IFASMF. and can be up to 26 characters
long; the resource name must be unique across resource
names on other INMEM statements and logstream names
on LSNAME statements

– You must also define a SAF resource in the FACILITY class to
protect the in-memory resource; the SAF resource profile
name must start with the IFA. high-level qualifier, followed
by the same name that you specify for rname

Default: none

EPV Performance University 17

SMF records – New parameters

• RESSIZMAX({nnnnM|nG})

– Specifies the size of the buffer available for this in-memory
resource, in megabytes or gigabytes.

– The in-memory resource acts as a wrap-around buffer.
When the buffer is full, older records are discarded as
newer records are written.

Default: 2 GB

EPV Performance University 18

SMF records – SMF 30

EPV Performance University 19

• SMF type 30 is one of the most important SMF
records. It provides extensive information about
any kind of address space (JOBS, STC, TSO)
activity and resource usage

• By default the following SMF 30 record subtypes
are produced:
 subtype 1 – written at address space initiation

 subtype 4 – written at step termination

 subtype 5 – written at address space termination

SMF records – SMF 30

EPV Performance University 20

• Milestones of a two steps address space execution
running from 6:11 up to 10:11

• A total of 4 SMF 30 records are created:

 1 subtype 1 at address space start

 2 subtype 4 at each step end

 1 subtype 5 at address space end

6:11 6:16 10:11

30-1

A.S. start Step end

Step end

A.S end

30-4 30-4
30-5

SMF records – SMF 30

EPV Performance University 21

• The first SMF 30 subtype 4 record provides
information about address space activity in the
first step (5 minutes elapsed)

• The second SMF 30 subtype 4 record provides the
same information about the second step
(remaining 3 hours and 55 minutes)

• Now let’s suppose this second step used 2.000
CPU seconds and you have different accounting
policies for CPU used before and after 8:00, how
can you manage that ?

SMF records – SMF 30

EPV Performance University 22

• To address this kind of issue, SMF interval accounting
has been introduced; SMF interval accounting
produces the following additional 30 records:
 subtype 2; it is written at a user defined interval; it collects

information about address space activity during the
previous interval

 subtype 3; it is written when steps end; it collects
information about address space activity from the end of
the previous interval up to the step end

 subtype 6; it is written at a user defined interval; it collects
information about some “early” system address spaces,
such as CONSOLE or GRS, started before SMF; note that all
these measurements are accumulated

SMF records – SMF 30

EPV Performance University 23

• Milestones of a two steps address space execution
running from 6:11 up to 10:11 (interval accounting)

 A subtype 2 interval record (every 10 minutes in this
example) is produced providing much more granular
information

 Two subtype 3 records are also produced

6:11 6:16 6:26 6:36 10:11

30-1

A.S. start Step end

Step end

A.S end

30-4 30-4

30-5

Interval Interval

30-2 30-2

30-3 30-3

SMF records – SMF 30

EPV Performance University 24

• By default SMF 30 interval accounting is not
activated (subtype 2 and 3 records are not
produced)

• To activate SMF interval accounting the following
parameters have to be set in the SMFPRMxx
member of the SYS1.PARMLIB library:
 INTVAL(mm) where mm is the interval duration; suggested

values are 10 or 15 minutes;

 SYNCVAL(nn) where nn is the minute in the hour that
starts the interval; suggested value is 00

SMF records – SMF 30

EPV Performance University 25

• It’s very important that you also set a global
recording interval; this way all the address spaces
will write SMF 30 subtype 2 at the same time at
the end of the interval

• To use a global recording interval the following
additional parameter have to be set in the
SMFPRMxx member of the SYS1.PARMLIB library
under the SYS and SUBSYS sections:

INTERVAL(SMF,SYNC)

SMF records – SMF 30

EPV Performance University 26

• Using the global recording interval will make SMF
30 very useful for performance analysis

JOB NAME 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

job1 169 524 377 283 221 520 404 329

job2 150 588 114 34 468 483 501 432

job3 343 259 422

job4 295

job5 282 31 405 427

job6 355 207

job7 265

job8 253

job9 222 250 318 172 306 136 293 205 148 332 272

job10 132 5 323 318 228 353

TOP 10 JOBS - MIPS used

SMF records – SMF 30

EPV Performance University 27

• By exploiting some of the metrics available in
SMF 30 interval records such as the task type, the
program name, the Address Space name you can
aggregate Address Spaces in workloads

• EPV does that automatically but you can
customize that

• This aggregation can be very useful for
performance analysis

SMF records – SMF 30

EPV Performance University 28

SMF records – SMF 30

EPV Performance University 29

• Exercise 1

A two step batch job runs in a system with the following SMF
settings: INTVAL(10), SYNCVAL(00), INTERVAL(SMF, SYNC)

First step starts at 8:01 and ends at 8:02, second step starts at 8:02
and ends at 9:05. How many SMF 30 records will be written for:

 Subtype 1

 Subtype 2

 Subtype 3

 Subtype 4

 Subtype 5

 Subtype 6

SMF records – SMF 30

EPV Performance University 30

• Exercise 1

A two step batch job runs in a system with the following SMF
settings: INTVAL(10), SYNCVAL(00), INTERVAL(SMF, SYNC)

First step starts at 8:01 and ends at 8:02, second step starts at 8:02
and ends at 9:05. How many SMF 30 records will be written for:

 Subtype 1 1

 Subtype 2 6

 Subtype 3 2

 Subtype 4 2

 Subtype 5 1

 Subtype 6 0

SMF records - RMF

EPV Performance University 31

• RMF records historically produced by RMF MON I in
SMF 70:78

• Many new record subtypes added by RMF MON III in
SMF 72 and especially in SMF 74

• It’s also very important to synchronise SMF and RMF
data by setting the SYNC(SMF) parameter in the
ERBRMFxx member, used by RMF Monitor I and III, in
your SYS1.PARMLIB library

• SMF 79 can also be used to store RMF MON II
information; you have to start a Monitor II
background session with the RECORD option

SMF records - RMF

EPV Performance University 32

Type SubType Description Default Used by EPV Notes

70 1 CPU, PR/SM and ICF Activity CPU YES

2 Cryptographic Hardware Activity CRYPTO YES

71 1 Paging Activity PAGING YES

72 3 Workload Activity WKLD YES

4 Storage Data NO RMF MON III

5 Serialization Delay NO RMF MON III

73 1 Channel Path Activity CHAN YES

74 1 Device Activity DEVICE(DASD) YES

2 XCF Activity YES RMF MON III

3 OMVS Kernel Activity YES RMF MON III

4 Coupling Facility Activity YES RMF MON III

5 Cache Subsystem Device Activity CACHE YES

• Serialization delay views will be included in future
EPV for z/OS versions

SMF records - RMF

EPV Performance University 33

• PCI Express and Storage Class Memory views have
been included in EPV for z/OS V14

Type SubType Description Default Used by EPV Notes

74 6 HFS Statistics NO RMF MON III

7 FICON Director Statistics NOFCD YES

8 Enterprise Disk System Statistics NOESS YES

9 PCI Express Based Function Activity NO RMF MON III

10 Storage Class Memory Statistics NO RMF MON III

75 1 Page Data Set Activity PAGESP YES

76 1 Trace Activity NOTRACE NO

77 1 Enqueue activity NOENQ NO

78 2 Virtual Storage Activity VSTOR(S) YES

3 I/O Queuing & HyperPAV Activity IOQ(DASD) YES

YES

SMF records – SMF 113

EPV Performance University 34

• The CPU Measurement Facility has been
introduced with z10 machines.

• Together with the z/OS Hardware
Instrumentation Services (HIS) it provides the
ability to gain measurements (counters and
samples) on the processor cache architecture
components

• Output is provided in SMF 113

• SMFINTVAL=SYNC to synchronize with other SMF
interval records is provided

SMF records – SMF 113

EPV Performance University 35

• To collect these measurements you need to perform
the following steps:
 authorize the sampling facilities and counter set through

the support element (SE) console;

 define a user ID for the HIS started task;

 create the HOME directory of the user ID;

 enable SMF record type 113 in SMFPRMxx;

 start the HIS by executing the S HIS command;

 activate data collection by issuing the following command:

F HIS,B,TT=‘text',PATH='/var/his',CTRONLY,CTR=ALL,SI=SYNC

SMF records – SMF 113

EPV Performance University 36

• The main goal of HIS counters is to provide
measurements on processor cache effectiveness
to calculate L1 Miss and RNI and choose the right
benchmark for your workload

• Starting the HIS address space you can collect
accumulated measurements and record them in
SMF 113 subtype 2

• Since z/OS 2.1 SMF 113 subtype 1 is also written
providing de-accumulated measurements

SMF records – SMF 113

EPV Performance University 37

z14 processor cache architecture

SMF records – SMF 113

EPV Performance University 38

• Most important groups of counters are:
basic counters; which should be used to calculate the

percentage of L1 misses; same counters for every machine

 extended counters; which should be used to calculate the
percentage of L1 misses sourced by each cache level and,
starting from them, the RNI value; specific counters for
each machine

SMF records – SMF 113

EPV Performance University 39

• BASIC COUNTERS:
B0, CYCLE COUNT

B1, INSTRUCTION COUNT

B2, L1 I-CACHE DIRECTORY-WRITE COUNT

B3, L1 I-CACHE PENALTY CYCLE COUNT

B4, L1 D-CACHE DIRECTORY-WRITE COUNT

B5, L1 D-CACHE PENALTY CYCLE COUNT

%L1 Miss = ((B2 + B4) / B1) * 100

SMF records – SMF 113

EPV Performance University 40

• z14 EXTENDED COUNTERS (1/2)
The number of L1 misses sourced by each cache levels can
be calculated as follows:
L2d, data sourced from L2 = E133;
L2i, instructions sourced from L2 = E136;
L3d, data sourced from L3 = E144 + E146 + E158;
L3i, instructions sourced from L3 = E162 + E164;
L4Ld, data sourced from L4 Local = E147 + E149 + E156

+ E150 + E152;
L4Li, instructions sourced from L4 Local = E165 + E167

+ E174 + E168 + E170;

SMF records – SMF 113

EPV Performance University 41

• z14 EXTENDED COUNTERS (2/2)
The number of L1 misses sourced by each cache levels can be
calculated as follows:
 L4Rd, data sourced from L4 Remote = E153 + E155 + E157;
 L4Ri, instructions sourced from L4 Remote = E171+ E173 +

E175;
MEMLd, data sourced from Local Memory = E145 + E148 +

E151;
MEMRd, data sourced from Remote Memory = E154;
MEMLi, instructions sourced from Local Memory = E163 +

E166 + E169;
MEMRi, instructions sourced from Remote Memory =

E172.

SMF records – SMF 113

EPV Performance University 42

• Starting from these measurements the percentage of
z14 L1 misses sourced by each cache level can be
calculated by using the following formulas:

%L2 = (L2d + L2i) / (B2 + B4) * 100

%L3 = (L3d + L3i) / (B2 + B4) * 100

%L4L = (L4Ld + L4Li) / (B2 + B4) * 100

%L4R = (L4Rd + L4Li) / (B2 + B4) * 100

%MEM = (MEMLd + MEMLi + MEMRd + MEMRd) / (B2 +
B4) * 100

SMF records – SMF 113

EPV Performance University 43

• RNI (Relative Nest Intensity) is an index measuring
how much a workload stresses the nest (shared
processor caches and memory)

• The coefficients (in bold) are used to weight cache
and memory accesses (IBM may change them)

• Also this formula is machine dependent

z14 RNI = 2,4 x (0,4 x %L3 + 1,5 x %L4L +

3,2 x %L4R + 7,0 x %MEM) / 100

SMF records – SMF 113

EPV Performance University 44

• LOW RNI (Relative Nest Intensity): it represents
workloads lightly using the memory nest (shared
processor caches and memory) hierarchy. It is similar to
past high scaling primitives

• AVERAGE RNI (Relative Nest Intensity): it represents
workloads with an average use of the memory nest. It is
similar to the past LoIO-mix workload and is expected to
represent the majority of production workloads

• HIGH RNI (Relative Nest Intensity): this category
represents workloads heavily using the memory nest. It
is similar to the past DI-mix workload

Benchmarks

SMF records – SMF 113

EPV Performance University 45

SMF records – SMF 113

EPV Performance University 46

• Why is important choosing the right benchmark?

SMF records – SMF 113

EPV Performance University 47

 -

 0,50

 1,00

 1,50

 2,00

 2,50

 3,00

 3,50

20
13

-2
1

20
13

-2
5

20
13

-2
9

20
13

-3
3

20
13

-3
7

20
13

-4
1

20
13

-4
5

20
13

-5
0

20
14

-0
2

20
14

-0
6

20
14

-1
0

20
14

-1
4

20
14

-1
8

20
14

-2
2

20
14

-2
6

20
14

-3
0

20
14

-3
4

20
14

-3
8

20
14

-4
2

20
14

-4
6

20
14

-5
1

20
15

-0
3

20
15

-0
7

20
15

-1
2

20
15

-1
7

20
15

-2
1

20
15

-2
5

20
15

-2
9

20
15

-3
3

20
15

-3
7

20
15

-4
1

Trend of L1 Miss by time shift

PEAK ALLDAY

SMF records – SMF 113

EPV Performance University 48

 -

 0,20

 0,40

 0,60

 0,80

 1,00

 1,20

 1,40

20
13

-2
1

20
13

-2
5

20
13

-2
9

20
13

-3
3

20
13

-3
7

20
13

-4
1

20
13

-4
5

20
13

-5
0

20
14

-0
2

20
14

-0
6

20
14

-1
0

20
14

-1
4

20
14

-1
8

20
14

-2
2

20
14

-2
6

20
14

-3
0

20
14

-3
4

20
14

-3
8

20
14

-4
2

20
14

-4
6

20
14

-5
1

20
15

-0
3

20
15

-0
7

20
15

-1
2

20
15

-1
7

20
15

-2
1

20
15

-2
5

20
15

-2
9

20
15

-3
3

20
15

-3
7

20
15

-4
1

Trend of RNI by time shift

PEAK ALLDAY

SMF records – SMF 113

EPV Performance University 49

• SMF 113 record layout has to be obtained by
integrating the information provided in the following
manuals

 SMF

 The Load-Program-Parameter and the CPU-Measurement
Facilities – SA23-2260-05

 The CPU-Measurement Facility Extended Counters
Definition for z10, z196/z114, zEC12/zBC12, z13/z13s and
z14– SA23-2261-04

SMF records – Db2

EPV Performance University 50

• The Db2 Instrumentation Facility Component (IFC)
provides a powerful trace facility that you can use to
record Db2 data and events

• These metrics are extremely useful to control and
tune Db2 subsystems and application performance

• Unfortunately the volume of trace data can be quite
large and the overhead to produce them can impact
system performance

• Managing and processing this data can also require a
lot of additional system resources

SMF records – Db2

EPV Performance University 51

• Each trace is broken down into classes. The type and
amount of information produced depends on the
activated classes

• Generally the activation of a class causes the
production of one or more Instrumentation Facility
Component Identifier (IFCID) record

• The description of the START TRACE command (in Db2
Command Reference) indicates which IFCIDs are
activated for the different types of trace and the
classes within those trace types

SMF records – Db2

EPV Performance University 52

• Statistics and Accounting traces can produce many
IFCIDs but their mapping to SMF records is pretty
simple:

most of the statistics trace IFCIDs are collected in SMF type
100

 accounting trace IFCIDs are collected in SMF type 101

 all the other IFCIDs are collected in SMF type 102

SMF records – Db2

EPV Performance University 53

• Statistics IFCIDs used by EPV for Db2

IFCID TRACE CLASS SMF TYPE SMF SUBTYPE DESCRIPTION

001 STATISTICS 1 100 0 SYSTEM SERVICES STATISTICS

002 STATISTICS 1 100 1 DATABASE STATISTICS

202 STATISTICS 1 100 2 BUFFER POOL PARAMETERS

230 STATISTICS 5 100 3 DATA SHARING GLOBAL STATISTICS

225 STATISTICS 1 100 4 STORAGE STATISTICS

172 DEADLOCK STATISTICS

196 TIMEOUT STATISTICS

105 DB TS MAPPING

199 STATISTICS 7 102 DATA SET I/O STATISTICS

STATISTICS 3 102

SMF records – Db2

EPV Performance University 54

• Accounting IFCIDs used by EPV for Db2

• IFCID 003 is used by EPV for z/OS to report DDF
throughput only

IFCID TRACE CLASS SMF TYPE SMF SUBTYPE DESCRIPTION

003 ACCOUNTING 1 101 0 PLAN ACCOUNTING

003 ACCOUNTING 2 101 0 PLAN IN DB2 TIME

003 ACCOUNTING 3 101 0 PLAN WAIT TIME

239 ACCOUNTING 7 101 1 PACKAGE ACCOUNTING

239 ACCOUNTING 8 101 1 PACKAGE WAIT TIME

239 ACCOUNTING 10 101 1 PACKAGE ACCOUNTING DETAILS

SMF records – MQ

EPV Performance University 55

• Specific SMF records, allowing you to measure MQ
infrastructure and workload, in detail, are available:

 SMF 115 providing statistics information

 SMF 116 providing accounting information

• SMF data collection is not active by default

• You have to request it by setting to YES the SMFSTAT
and SMFACCT parameters provided in the CSQ6SYSP
macro

SMF records – MQ

EPV Performance University 56

• Setting SMFSTAT to YES will cause the activation of the
Class 1 statistics trace and the production of two SMF
115 records:

one subtype 1 record, including log manager and storage
manager statistics

one subtype 2 record, including message manager, data
manager, buffer manager, lock manage, Db2 manager and
CF manager statistics

• Setting STATIME to zero will align statistics record
production to the SMF global accounting interval

SMF records – MQ

EPV Performance University 57

• With MQ 7.1 statistics trace class 3 provides
information about MQ memory used by MSTR address
space in SMF 115 subtype 7 ; already available in EPV
for MQ V13

• With MQ 8 and 9 new statistics provided in SMF 115:

– extended buffer pools in subtype 215; they are available in
EPV for MQ V13

– log task activity in subtype 1; available in EPV for MQ V14

– channel initiators in subtype 231; available in EPV for MQ V14

– page sets in subtype 201; available in EPV for MQ V14

SMF records – MQ

EPV Performance University 58

SMF records – MQ

EPV Performance University 59

SMF records – MQ

EPV Performance University 60

CHIN
QUEUE

MANAGER

channels dispatchers adapters

SSL

DNS

• Lot of information from inside the channel initiator AS

SMF records – MQ

EPV Performance University 61

• Setting SMFACCT to YES will activate the class 1
accounting trace causing the production of one SMF
116 subtype 0 record at every thread termination;
used in EPV for z/OS

• More detailed information about threads and queues
can be collected by activating the class 3 accounting
trace causing the production of one subtype 1 and
one or more subtype 2 records at thread termination
and, for long running threads, at the time interval
specified in STATIME; used in EPV for MQ

SMF records – MQ

EPV Performance University 62

SMF records – MQ

EPV Performance University 63

• With MQ 8 accounting information about channel
initiator will be available in SMF 116 subtype 10; they
will be available in EPV for MQ V14

• EPV for MQ V14 MA is expected by the end of March

SMF records – WebSphere

EPV Performance University 64

• WAS performance information provided in SMF 120

• EJB and WEB application measurements aggregated
by object and interval in SMF 120 subtype 6 and 8

• Low overhead and few records

• They are used in EPV for z/OS Throughput views

EPV Performance University 65

• Record type 120 provides the following subtypes:

 Subtype 1: Server activity record,

 Subtype 3: Server interval record

 Subtype 5: J2EE container activity record

 Subtype 6: J2EE container interval record

 Subtype 7: WebContainer activity record

 Subtype 8: WebContainer interval record

 Subtype 9: Request Activity record

 Subtype 10: Outbound Request record

 Subtype 11: Liberty activity

SMF records – WebSphere

EPV Performance University 66

• Go to the Environment entries page of the
administrative console

• click Servers > Server Types > WebSphere application
servers > server_name > Java and Process
Management > Process definition > Environment
entries

• To enable SMF type 120 records, click New, and
specify one or more of the following properties

SMF records – WebSphere

EPV Performance University 67

• To produce SMF 120 from subtype 1 to 8 set:
 name = server_SMF_interval_length, value=n, where n is the

interval, in seconds; set this value to 0 to use the default SMF
recording interval

 name = server_SMF_server_activity_enabled = 1 (subtype 1)

 name = server_SMF_server_interval_enabled = 1 (subtype 3)

 name = server_SMF_container_activity_enabled = 1 (subtype 5
and 7)

 name = server_SMF_container_interval_enabled = 1 (subtype 6
and 8)

SMF records – WebSphere

WEBSPHERE records – SMF 120

EPV Performance University 68

• To produce SMF 120 subtype 9 set:
 name = server_SMF_request_activity_enabled = 1

 name = server_SMF_request_activity_CPU_detail = 1

 name = server_SMF_request_activity_timestamps = 1

 name = server_SMF_request_activity_security = 1

 name = server_SMF_request_activity_async = 1

• To produce SMF 120 subtype 10 set:
 name = server_SMF_outbound_enabled = 1

• To produce SMF 120 subtype 11 see:
WebSphere Liberty: Understanding the SMF 120 Subtype 11 Record

EPV Performance University 69

• SMF 120 subtype 6 and 8 used in EPV for z/OS

• Main issue: CPU time includes zIIP/zAAP time, no
asynch beans information

• Possible solution is SMF 120 subtype 9

• We investigated the possibility to use it instead of
subtype 6 and 8

SMF records – WebSphere

EPV Performance University 70

• WebSphere creates one subtype 9 record for every
request that the server processes — for both external
requests (application requests) and internal requests,
such as when the controller "talks to" the servant
regions.

from ‘Understanding SMF Record Type 120, Subtypes 9 and 10’ - WP101342

SMF records – WebSphere

WEBSPHERE records – SMF 120

EPV Performance University 71

• Activating SMF 120 subtype 9 will greatly increase the
number of SMF records produced compared to using
subtype 6 and 8

• In our test with a 2 minutes SMF interval we got
about 500 subtype 6 and 8

• The number of subtype 9 records exceeded 100.000

EPV Performance University 72

• Activating SMF 120 subtype 9 may impact WAS
performance

• We turned it on during a performance test and
WebSphere was so slow that we should turn it off
after few minutes

• In that test we used all the collection options

• We plan to check it better but the feeling is that
subtype 9 should not be used in production or when
performing extensive tests

SMF records – WebSphere

EPV Performance University 73

• If you don’t activate the CPU Usage Breakdown option
you don’t get info at the object level (servlet, EJB
method, etc)

• If you activate the CPU Usage Breakdown option you
get info only for the first 30 objects involved (e.g. if a
servlet calls 35 different EJBs, information about only
the first 29 EJBs, plus 1 servlet is provided)

• Split of CPU and zAAP/zIIP time is not provided in the
CPU Usage Breakdown section

SMF records – WebSphere

EPV Performance University 74

• We tried to match EJB measurements in subtype 6
and 9

• We only focused on number of method executions
and CPU time

• We found many numbers not matching

• We’ve investigated it again when we started EPV for
z/OS V14 development but we found the same issues

SMF records – WebSphere

EPV Performance University 75

AMCName (Application::Module::Class) # Total CPU # Total CPU

IDM::1stWfmEjbBuilder.jar::ProcErrorHandlerBean 3532 0,08 7.064 0,33

IDM::1stWfmEjbBuilder.jar::ServiceCall 571 0,06 1.142 5,56

IDM::depEjbBuilder.jar::DEPDataHandler 666 1,05 666 1,09

IDM::depEjbBuilder.jar::DEPFaultHandler 666 0,09 666 0,04

IDM::depEjbBuilder.jar::SWIIncomingFileSNF01MDB 26 12,78 26 12,46

IDM::depEjbBuilder.jar::SWIIncomingMessageTechnicalAckSNF01MDB 315 27,97 315 27,56

IDM::depEjbBuilder.jar::SWIIncomingMessageTechnicalAckSNF02MDB 325 29,46 325 29,03

IDM::MMCommonServicesEjbBuilder.jar::J1.INFOCENTER.QUEUE 3467 116,43 3.467 115,20

IDM::MMDriversFromApplEjbBuilder.jar::J1.MESSAGE03.FROM.BOA.QUEUE 79 12,48 79 12,43

IDM::runtimeYavaEjb.jar::CounterBean 15 0,03 15 0,03

IDM_WEB::webgenServiceEntryPoint-ejb-1.0.0.jar::ServiceEntryPoint 585 12,26 1.328 22,43

IDM_WEB::webgenServiceEntryPoint-ejb-1.0.0.jar::SessionDerivedData 762 0,15 4.512 0,42

11.009 212,85 19.605 226,59

SMF 120-6 SMF 120-9

SMF records - CICS

EPV Performance University 76

• CICS can produce the following SMF records:

 SMF 110 subtype 1; monitoring records (used by EPV for
z/OS)

 SMF 110 subtype 2; statistics records

 SMF 110 subtype 3; shared temporary storage queue
server statistics

 SMF 110 subtype 4; coupling facility data table server
statistics

 SMF 110 subtype 5; named counter sequence number
server statistics

 SMF 111 subtype 1 for CICS Transaction Gateway statistics

EPV Performance University 77

• CICS can collect four types, or classes, of monitoring
data:

Performance class data; detailed transaction-level
information, such as the processor and elapsed time
details for a transaction; at least one performance
monitoring record for each transaction (used by EPV for
z/OS)

 Exception class monitoring data; information on CICS
resource shortages suffered by a transaction, such as
queuing for file strings, or waiting for temporary storage;
one exception record for each exception condition
occurred

SMF records - CICS

EPV Performance University 78

 Transaction resource class data; additional transaction-
level information about individual resources accessed by a
transaction

 Identity class data; enhanced audit information by
capturing identity propagation data from a client system
across a network for eligible transactions

SMF records - CICS

EPV Performance University 79

• You can enable performance class monitoring by
coding MNPER=ON (together with MN=ON) as a
system initialization parameter

• Alternatively, you can use the monitoring facility
transaction CEMN, or the EXEC CICS SET MONITOR
command, to enable performance class monitoring
dynamically

SMF records - CICS

EPV Performance University 80

• Most of CICS users customize the MCT

• So the record layout of SMF 110 is extremely variable

• To allow to use SMF 110 information each CICS
region at start up write what is called “dictionary
record”

• A dictionary record holds definitional information
about each data field in a performance class data
record

SMF records - CICS

SMF records - CICS

EPV Performance University 81

• A new dictionary record, which always precedes the
monitoring performance class data it relates to, is
written whenever the user:

 Starts CICS with the performance class active, and CICS
monitoring on

Changes the status of the monitoring performance class
from inactive to active, with CICS monitoring on; if
monitoring is off and the monitoring performance class is
switched from inactive to active, a dictionary record is
scheduled to be written the next time monitoring is
activated

EPV Performance University 82

• If SMF switches data sets during the period when
CICS monitoring is writing performance class data,
CICS does not write a new dictionary record

• So it could not be possible to analyse SMF 110
records collected in that data set

• To overcome this issue you can use the CICS-supplied
monitoring dictionary utility program, DFHMNDUP,
and write dictionary records to a sequential data set

• Then you can read it before the SMF data set

SMF records - CICS

EPV Performance University 83

//STEP1 EXEC PGM=DFHMNDUP

//STEPLIB DD DSN=CICS.XXX.SDFHLOAD,DISP=SHR

// DD DSN=CICS.XXX.CAT.LOADLIB,DISP=SHR

//SYSUT4 DD DSN=YOUR.OUTPUT.DICT,UNIT=SYSDA,

// SPACE=(CYL,(1,1)),DISP=(,CATLG)

//SYSPRINT DD SYSOUT=*

//SYSIN DD *

MCT=MCT suffix

SYSID=sysid

GAPPLID=generic applid

SAPPLID=specific applid

/*

SMF records - CICS

EPV Performance University 84

• CICS transaction CPU time always included time
spent on zIIP/zAAP

• zIIP/zAAP time NORMALIZED to the CPU speed

• Starting from CICS TS 5.1 new metrics are available to
separate CPU and zAAP/zIIP time

• Detailed information about CICS transaction is
provided in SMF 110 subtype 1

SMF records - CICS

EPV Performance University 85

• USRCPUT: total TCB time

• RLSCPUT: SRB CPU time spent processing
RLS file requests

• CPUTONCP: total CPU TCB time

• OFFLCPUT: CPU TCB time eligible for offload
to zIIP/zAAP

• Normalized (CPU speed) zIIP/zAAP TCB time

USRCPUT – CPUTONCP

SMF records - CICS

EPV Performance University 86

• USRCPUT can exceed elapsed time when using knee-
capped processors

• To avoid that and correctly decompose CICS
transactions elapsed time you have to de-normalized
zIIP/zAAP TCB time:

(USRCPUT – CPUTONCP) * 256 / R723NFFS

• R723NFFS is the normalization factor for zIIP
available in SMF 72

SMF records - CICS

EPV Performance University 87

• Exercise 2

CICS transaction running on a knee capped processor;
zIIP speed 2 times CPU (R723NFFS=512)

– Elapsed time is 1 sec

– USRCPUT=1,4 sec

– CPUTONCP=0,2 sec

Calculate:

– de-normalized zIIP time

– not CPU not zIIP time

SMF records - CICS

EPV Performance University 88

• Exercise 2

CICS transaction running on a knee capped processor;
zIIP speed 2 times CPU (R723NFFS=512)

– Elapsed time is 1 sec

– USRCPUT=1,4 sec

– CPUTONCP=0,2 sec

Calculate:

– de-normalized zIIP time = (1, 4 sec – 0,2 sec) * 256 / 512 =
0,6 sec

– not CPU not zIIP time = 1 sec – 0,2 sec – 0,6 sec = 0,2 sec

SMF records - CICS

IMS log records

EPV Performance University 89

IMS log records - Overview

EPV Performance University 90

• IMS doesn’t write any SMF record

• All the relevant events are mapped to a specific log
record number and written to the IMS log

• For many years BMC Mainview for IMS produced
“Transaction log record”, identified by the log record
number x’FA’ – BMC FA in the following

• Since IMS V10, IBM finally decided to provide an IMS
log record specifically designed to collect
performance information: the x’56FA’ log record
(56FA in the following)

IMS log records – BMC FA records

EPV Performance University 91

• A specific Mainview for IMS component is
responsible for data collection and BMC FA
recording: the Event Collector; you can customise it
by setting data collection parameters

• Discussion of these parameters is beyond the scope
of this presentation so we will only focus on two of
them :

• BMP = (YES | NO | NOCPU);

• CPU = (DEP | DEPPGM | DEPDb2 | ALL | NONE)

IMS log records – BMC FA records

EPV Performance University 92

• If you want to collect BMP (and JBP) transaction and
program activity data and the corresponding CPU
consumption you have to specify BMP=YES

• If you want to know how much of the transaction
CPU has been used in Db2 then you have to choose
CPU=DEP, DEPDb2 or ALL

IMS log records – IBM 56FA records

EPV Performance University 93

• You can enable or disable 56FA logging globally
during system definition by specifying a new
parameter, TRANSTAT (Y/N, where N is the default),
in the Diagnostics Statistics section of the new
DFSDFxxx PROCLIB member

• You can enable or disable 56FA logging on a program
basis for non-message driven applications, and on a
tran-by-tran basis for message-driven applications by
using IMS UPDATE and CREATE commands

IMS log records – Selection

EPV Performance University 94

• Whatever input you choose to select only the
needed records from the IMS log you can use the
DFSERA1O utility

IMS log records – Selection

EPV Performance University 95

//SELIMS EXEC PGM=DFSERA10
//STEPLIB DD DSN=RESLIB,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD DSN=SLDS,
// DISP=(OLD,PASS),UNIT=TAPE
//SYSUT4 DD DSN=OUTPUT_FILE,DISP=(,CATLG,DELETE),
// UNIT=SYSDA,
// SPACE=(CYL,(100,100),RLSE),
// DCB=(RECFM=VB,LRECL=30970,BLKSIZE=30974)
//SYSIN DD *
CONTROL CNTL STOPAFT=EOF
OPTION COPY OFFSET=5,FLDLEN=2,VALUE=56FA,COND=E
OPTION COPY OFFSET=5,FLDLEN=1,VALUE=FA,COND=E
END

IMS log records - Layout

EPV Performance University 96

• BMC FA record layout is described in the Appendix A
of “Mainview for IMS Offline – Customization and
Utilities Guide”

• BMC FA record DSECTs are also provided in the
IMETRN and IMETRNX members of the BBSAMP
library

• All the IBM log records layout, including 56FA, can be
obtained by assembling the ILOGREC macro (see JCL
example in the next slide)

IMS log records - Layout

EPV Performance University 97

//DSECT PROC
//HASM EXEC
PGM=IEV90,PARM='NODECK,NOXREF,LIST,NORLD,NOOBJECT'
//SYSLIB DD DISP=SHR,DSN=IMS_prefix.SDFSMAC
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(2,1))
//SYSUT2 DD UNIT=SYSDA,SPACE=(CYL,(2,1))
//SYSUT3 DD UNIT=SYSDA,SPACE=(CYL,(2,1))
//SYSPRINT DD SYSOUT=*
// PEND
//D1 EXEC DSECT
//SYSIN DD *

ILOGREC RECID=56
END

IMS log records - Layout

EPV Performance University 98

IMS log records – Old IBM records

EPV Performance University 99

• Many customers still use IMS log records 1, 7, 8

• Their processing is more complex and resource
consuming because you have to merge these records

• Not all the needed information are provided because
these records have not been designed for
performance analysis

• Most important missing fields:
 IMSID

 IMS version

 Transaction input queue time

IMS log records – New CPU Metrics

EPV Performance University 100

• In BMC FA, total CPU time, including zAAP/zIIP time,
is provided in the TRXZTCPU field while the standard
CPU time is provided in the TRXZONCP

• To get the zAAP/zIIP time:

zAAP/zIIP time = TRXZTCPU - TRXZONCP

• As in CICS the zAAP/zIIP time is normalized to the
CPU speed

• zAAP and zIIP eligible time on standard CPU is
provided in TRXZAOCP and TRXZIOCP

• CPU time in Db2 is provided (DEP, DEPDb2, ALL)

EPV Performance University 101

• In 56FA, from IMS V12, zAAP/zIIP time is provided in
the TPEZAAP field while the standard CPU time is
collected in TPEXTIME

• As in CICS the zAAP/zIIP time is normalized to the
CPU speed

• zAAP and zIIP eligible time on standard CPU is not
provided in 56FA records

• CPU time in Db2 still missing in 56FA (you need to
look at SMF 101)

IMS log records – New CPU Metrics

DCOLLECT records

EPV Performance University 102

EPV Performance University 103

• The DFSMS Data Collection Facility (DCOLLECT) is a
function of Access Method Services

• DCOLLECT may provides a lot of information about
storage usage in many different record types

• The most commonly used are:

– Type V, for Volume information (used by EPV for z/OS)

– Type D, for Data set information

DCOLLECT records - Overview

EPV Performance University 104

• This information can be used for disk space tuning,
capacity planning and cost accounting

• The DCOLLECT record layout is provided in the
Appendix of the DFSMS Access Method Services –
Commands manual

DCOLLECT records - Overview

EPV Performance University 105

• Volume info can be collected with this simple JCL

//SELDCOL EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//DCOUT DD DSN=dcolpref.sysid,DISP=(,CATLG,DELETE),
// UNIT=SYSDA, SPACE=(CYL,(10,1),RLSE),
// DCB=(RECFM=VB,LRECL=644,BLKSIZE=0)
//SYSIN DD *

DCOLLECT -
OUTFILE(DCOUT) -
VOLUMES(*) -
NODATAINFO

/*

DCOLLECT records – Volume info

EPV Performance University 106

• Dataset info can be collected with this simple JCL

//SELDCOL EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//DCOUT DD DSN=dcolpref.sysid,DISP=(,CATLG,DELETE),
// UNIT=SYSDA, SPACE=(CYL,(10,1),RLSE),
// DCB=(RECFM=VB,LRECL=644,BLKSIZE=0)
//SYSIN DD *

DCOLLECT -
OUTFILE(DCOUT) -
VOLUMES(*)

/*

DCOLLECT records – Dataset info

VTS BVIR records

EPV Performance University 107

VTS BVIR records - Overview

EPV Performance University 108

• The IBM Virtualization Engine TS7700, also named
Hydra, is the current generation of tape virtualization
solution for mainframe systems

• The new architecture has been completely
redesigned to make it more modular and scalable
and to allow easy implementation of advanced
Disaster Recovery and Business Continuity solutions

• We will call it simply VTS in the following

VTS BVIR records - Overview

EPV Performance University 109

• VTS is built on a distributed node architecture; the
virtualization engine includes:
 a VNODE; it is the virtualization node and has to present

the image of virtual drives to host systems; it receives tape
mounts requests, translates them to virtual tape drive
requests and uses files in a disk subsystem , the so called
Tape Volume Cache (TVC), to represent the logical tape
volume image

 a HNODE; it is the hierarchical data storage management
node and has to perform all management of a logical tape
volume residing in the TVC or in a physical tape after it has
been created or altered by the host system through a
VNODE; it is also responsible for any replication of the
logical volumes and their attributes across site boundaries

VTS BVIR records - Overview

EPV Performance University 110

• A Cluster is the combination of the Virtualization
Engine with a disk subsystem providing the TVC and
(optionally) that part of a Tape Library which is
assigned to the VTS

VNODE

HNODE

TVC

TAPE LIB

• A Cluster always belongs to a grid; to identify a
cluster (a VTS) you need:
 the Grid Library Sequence Number, 5 characters
 the Cluster ID, 1 byte hexadecimal value to identify clusters

inside a grid (from x’00’ to x’07’)

VTS BVIR records - Overview

EPV Performance University 111

TVC TVC

TAPE LIB TAPE LIB

VNODE

HNODE

VNODE

HNODE

VTS BVIR records - Statistics

EPV Performance University 112

• The VTS statistics production system has been also
redesigned to provide a lot of very useful metrics

• The bad news is that no SMF records are written
natively; all the statistics are collected inside the
machine

• These statistics are available to users via the Bulk
Volume Information Retrieval (BVIR) facility

VTS BVIR records - Statistics

EPV Performance University 113

• Two types of statistics are provided:
Point-in-time statistics to understand what’s happening in

the VTS at this moment; data provided by this type of
statistic is a snapshot of the activity over the last 15-
second interval; each new 15-second interval data overlays
the previous interval’s data

Historical statistics to understand how you are using VTS
resources; the data provided by this type of statistic is
captured over a 15-minute interval; 90 rolling days of
historical statistics are kept in the VTS subsystem database
(used by EPV for z/OS)

VTS BVIR records - Statistics

EPV Performance University 114

VTS BVIR records – Producing statistics

EPV Performance University 115

• To get statistical records from BVIR you may use a
two step JCL running the standard IEBGENER utility

• The result is a file in Undefined format containing
binary data which has to be interpreted by using the
appropriate record formats (see IBM Virtualization
Engine TS7700 Series - Statistical Data Format -
White Paper)

VTS BVIR records – Producing statistics

EPV Performance University 116

• In the first step a single data set with the information
request is written to a logical volume

• The logical volume can be any logical volume in the
subsystem the information is to be obtained from

• The data set contains a minimum of two records and a
maximum of three records that specifies the type of data
being requested

• The records are in human readable form, i.e. lines of
character data

• On close of the volume, the virtualization engine server
will recognize it as a request volume and ‘prime’ the
subsystem for the next step

VTS BVIR records – Producing statistics

EPV Performance University 117

//VTSREQ EXEC PGM=IEBGENER

//SYSPRINT DD SYSOUT=*

//SYSIN DD DUMMY

//SYSUT2 DD DSN=userid.VTSREQ,

// LABEL=(1,SL),DISP=(,CATLG),UNIT=vtsunit,

// DCB=(RECFM=F,BLKSIZE=80,LRECL=80,TRTCH=NOCOMP)

//SYSUT1 DD *

VTS BULK VOLUME DATA REQUEST

HISTORICAL STATISTICS FOR 334-334

VTS BVIR records – Producing statistics

EPV Performance University 118

• In the second step, the request volume is again
mounted, this time as a specific mount

• Seeing that the volume was ‘primed’ for a data
request, the virtualization engine appends the
requested information to the data set

• Once the VTS has completed appending to the data
set, the host is notified that the mount has
completed

• The requested data can then be accessed like any
other tape data set

VTS BVIR records – Producing statistics

EPV Performance University 119

//VTSDATA EXEC PGM=IEBGENER

//SYSPRINT DD SYSOUT=*

//SYSUT1 DD DSN=userid.VTSREQ,DISP=SHR,

// DCB=(RECFM=U,BLKSIZE=24000)

//SYSUT2 DD DSN=userid.VTSDATA,

// SPACE=(CYL,(10,5)),DISP=(,CATLG),

// UNIT=SYSDA,DCB=(RECFM=U,BLKSIZE=24000)

//SYSIN DD DUMMY

VTS BVIR records – Producing statistics

EPV Performance University 120

• Many customers disagree with the IBM decision to
not provide VTS statistics in SMF because it requires
ad hoc processing separated from the standard SMF
flow

• So IBM decided to provide additional IBM tools
which allow for the writing of VTS Historical statistics
records in SMF

• You have to download programs and JCL from the
IBM tapetool ftp site

VTS BVIR records – Producing statistics

EPV Performance University 121

ftp://ftp.software.ibm.com/storage/tapetool/

ftp://ftp.software.ibm.com/storage/tapetool/

VTS BVIR records – Producing statistics

EPV Performance University 122

• Writing VTS Historical statistics records in SMF is not
straightforward; two main issues have to be
addressed:
 the CPYHIST program, writing the VTS SMF records, has to

reside in an APF library
 you need to download the IBM programs and JCL

periodically because they have an expiration date, set by
IBM, to ensure that customers don’t use obsolete objects

Moving data to another
platform

EPV Performance University 123

Moving data to another platform

EPV Performance University 124

• All V, VB and VBS records have a 4-byte BDW and a 4-byte
RDW

• V uses only the BDW, VB uses BDW and RDW, and VBS uses
both and the low two-bytes of RDW for the spanning bits)

• Block Descriptor Word (BDW)
 The block descriptor word is a 4-byte field that describes the

block; it specifies the 4 byte block length for the BDW plus the
total length of all records or segments within the block

• Record Descriptor Word (RDW)
 The record descriptor word is a 4 byte field describing the

record; the first 2 bytes contain the length (LL) of the logical
record (including the 4 byte RDW); the length can be from 4 to
32 760

Moving data to another platform

EPV Performance University 125

• Tools based on ftp strip away both the BDW and
RDW blocks to transfer only the data

• Without these blocks providing information about
start and end of physical and logical records the
records arriving to the external platform are not
readable anymore

BDW RDW DATA

DATA

Moving data to another platform

EPV Performance University 126

• All the input data normally used for z/OS
Performance Analysis are in VBS or VB format

• When sending this data to another platform the
following actions are needed in order to assure they
will be readable:
Protect the block and record headers
 Transfer the data in binary mode

Moving data to another platform

EPV Performance University 127

• To protect BDW and RDW you can:
Convert the VB or VBS data set to Undefined format; it can

be done with a JCL step; it requires to perform a copy of
the file

Mask data as Undefined format; it can be done during the
ftp or with a JCL step which changes the data set DSCB to
RECFM=U without copying it; this second option doesn’t
work with multi-volume data sets

Compress data; data can be compressed with many
expensive tools; the best option is EPVzip, a JAVA tool
using only zIIP time free for EPV customers

Moving data to another platform

EPV Performance University 128

• When converted or masked as Undefined, all the
record, included BDW and RDW, is considered as
data

• When compressed, all the record is consider as
data

Moving data to another platform

EPV Performance University 129

Converting a VBS data set to Undefined

//UNDSMF EXEC PGM=IEBGENER

//SYSPRINT DD SYSOUT=*

//SYSUT1 DD DSN=smfpref.VBS,DISP=SHR,

// DCB=(RECFM=U,BLKSIZE=32760)

//SYSUT2 DD DSN=smfpref.UND,DISP=(,CATLG),

// DCB=(RECFM=U,BLKSIZE=32760),

// UNIT=SYSDA,SPACE=(CYL,(100,100),RLSE)

//SYSIN DD DUMMY

/*

Moving data to another platform

EPV Performance University 130

Masking a VBS data set as Undefined

//UNDSMF EXEC PGM=IEBGENER

//SYSPRINT DD SYSOUT=*

//SYSUT2 DD DSN=smfpref.VBS,DISP=MOD,

// DCB=RECFM=U

//SYSUT1 DD DSN=NULLFILE,DCB=*.SYSUT2

//SYSIN DD DUMMY

/*

Moving data to another platform

EPV Performance University 131

Masking a VBS data set as Undefined during ftp
//FTPSMF EXEC PGM=FTP,PARM='(EXIT'
//SYSPRINT DD SYSOUT=*
//OUTPUT DD SYSOUT=*
//DDSMF DD DSN=smfpref.VBS,RECFM=U,BLKSIZE=32760,DISP=SHR
//INPUT DD *
your.ftp.host.address
user password
quote PASV
bin
put //DD:DDSMF /smfpref.smf
close
quit

Moving data to another platform

EPV Performance University 132

Converting BVIR data to VB and then to Undefined

//FROMU2VB EXEC PG=IEBGENER

//SYSPRINT DD SYSOUT=*

//SYSUT1 DD DSN=userid.VTSDATA,DISP=(OLD,PASS)

//SYSUT2 DD DSN=userid.VTSVB,DISP=(,PASS),

// DCB=(RECFM=VB,LRECL=32756,BLKSIZE=32760),UNIT=SYSDA,SPACE=(CYL,(10,5))

//SYSIN DD DUMMY

//*

//FINAL EXEC PGM=IEBGENER

//SYSPRINT DD SYSOUT=*

//SYSUT1 DD DSN=userid.VTSVB,DISP=(OLD,PASS), DCB=(RECFM=U,BLKSIZE=32760)

//SYSUT2 DD DSN=userid.VTSUND,DISP=(,CATLG),

// DCB=(RECFM=U,BLKSIZE=32760),UNIT=SYSDA,SPACE=(CYL,(10,5))

//SYSIN DD DUMMY

Moving data to another platform

EPV Performance University 133

Compressing a VBS data set with EPVzip

//EPV001A JOB MSGCLASS=A,CLASS=A,NOTIFY=&SYSUID
// SET JAVA='/usr/lpp/java/J8.0/bin'
// SET INSTDIR='/u/epv/v2/'
//EPVZIP EXEC PGM=BPXBATCH,
// PARM=('pgm &JAVA./java -jar &INSTDIR./EPVzip.jar')
//STDENV DD *
LC_ALL=en_us.IBM-1047
_BPX_SHAREAS=YES
_BPX_BATCH_SPAWN=YES
_BPX_SPAWN_SCRIPT=YES
//CEEDUMP DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//STDOUT DD SYSOUT=*
//STDERR DD SYSOUT=*
//INPUT DD DISP=SHR,DSN=EPV001.SMF,DCB=RECFM=U
//OUTPUT DD DISP=(,CATLG),DSN=EPV001.SMFZIP,
// DCB=(BLKSIZE=27998,RECFM=U),UNIT=SYSDA,SPACE=(CYL,(500,200))

Moving data to another platform

EPV Performance University 134

• Whatever method you use to protect record
integrity, remember to ftp the data set in binary
mode

• Other methods not based on ftp can be used to send
data to other platforms:
 z/OS SMB
 z/OS NFS
 Storage processor features (e.g. EMC InfoMover)

zParser data collection
architecture

EPV Performance University 135

zParser data collection architecture - Overview

EPV Performance University 136

• EPV zParser is a revolutionary alternative tool designed
to free customers from the need of using old, expensive
and complex-to-manage mainframe tools to interpret
and collect SMF and other data needed to support
Capacity Management and other related activities

• It interprets and collects SMF and RMF standard records,
SMF user records, IMS log records, IDCAMS/DCOLLECT
records, z/VM monitor records, VTS records produced by
the IBM TS7700 VTS, CSV files and creates TXT files which
can be loaded in a SQL database

zParser data collection architecture - Overview

EPV Performance University 137

• The product architecture is modular and very
flexible. It can be installed on most of the hardware
and software platforms on the market

• It can be customized in different ways depending on
the customer needs

ZVM

CSV

LOGIMS

BVIR

DCO

SMF

EPV zParser
on Windows /
Linux / zLinux

138

zParser data collection architecture - Overview

Mainframe
zParser DB on

MySQL/MariaDB /
MS SQL SERVER /

Impala on Hadoop

zParser data collection architecture - Collection modes

EPV Performance University 139

• Depending on the customer needs and amount of
SMF data produced on a daily basis, zParser can work
in two different ways:

Once a day

Continuous mode

EPV Performance University 140

• Once a day

Send the input files all together (normally just after
midnight) or as soon as they are produced during the
day

The parsing process, the data aggregation and the HTML
production will start only once a day at a specific point
in time set in your scheduler

Just one day of raw SMF data is kept in the zParser’s DB

This processing mode is ideal for small and medium size
customers (e.g. less than 20 GB of input data per day)

zParser data collection architecture - Collection modes

EPV Performance University 141

• Continuous mode

Send the input files as soon as they are produced during
the day

The parsing process will start as soon as each file arrives

The data aggregation and the HTML production is
triggered through the STARTBTC flag file from MF

Multiple days of raw SMF data can be kept in the zParser
DBs in a round robin fashion

This processing mode is ideal for large size customers
(e.g. more than 20 GB of input data per day).

zParser data collection architecture - Collection modes

zParser data collection architecture - Licenses

EPV Performance University 142

• Lite: available only the records and fields needed by
the licensed EPV products (EPV for z/OS, EPV for
Db2, EPV for zLINUX and EPV for MQ)

• Full: all the desired records and fields; it’s up to the
customer to select what has to be processed

• Big Data: same as Full but with more possibilities to
configure the architecture (ideal for large size
customers)

zParser data collection architecture - Licenses

EPV Performance University 143

• Lite: no possibility to choose between record
types/subtypes and fields

zParser data collection architecture - Licenses

EPV Performance University 144

• Lite licenses are always related to other EPV products
installed by the customer. So, these are the available lite
licenses with different combination of EPV products:
only EPV for z/OS
only EPV for Db2
only EPV for zLINUX
only EPV for MQ
only EPV for z/OS & EPV

for Db2
only EPV for z/OS & EPV

for zLINUX
only EPV for Db2 & EPV

for zLINUX

only EPV for z/OS & EPV for MQ

only EPV for Db2 & EPV for MQ

only EPV for MQ & EPV for zLINUX

 EPV for: z/OS - Db2 - zLINUX

 EPV for: z/OS - Db2 - MQ

 EPV for: z/OS - zLINUX - MQ

 EPV for: Db2 - zLINUX - MQ

 EPV for: z/OS - Db2 - zLINUX - MQ

zParser data collection architecture - Licenses

EPV Performance University 145

• Full: possibility to choose between record
types/subtypes and fields

zParser data collection architecture - Licenses

EPV Performance University 146

• Big Data: completely customizable process

zParser data collection architecture - Licenses

EPV Performance University 147

• Big Data: completely customizable process

zParser data collection architecture - Fields selection

EPV Performance University 148

• Available with Full or Big Data licenses

• Graphical user interface to easily make the selection

• Also possible when running in Continuous mode,
with no impact on the daily processing, through the
‘Promote Profile’

• Available for both Windows and Linux user profiles

zParser data collection architecture - Fields selection

EPV Performance University 149

• Run EPVAdvancedGUI.exe in EPVROOT/SETUP

• Press the EPV zParser button

zParser data collection architecture - Fields selection

EPV Performance University 150

• Select one Input Engine of your interest (for example
SMF)

zParser data collection architecture - Fields selection

EPV Performance University 151

• The ‘SMF Record Types’ tab is divided in 3 areas:

EPV Dictionary: it contains ALL the available SMF
records

Modify area: it contains the record type in which you
want to make a selection on specific subtypes or
fields

Target Area: it contains the SMF records selected by
the user

zParser data collection architecture - Fields selection

EPV Performance University 152

zParser data collection architecture - Fields selection

EPV Performance University 153

• To add one SMF record type to the user’s selection:

Select the SMF record from the EPV Dictionary area

(Also a multiple selection can be performed by using
the Ctrl key on the keyboard)

Press the Target button below the EPV Dictionary
area

Once added all the desired records, select Options,
then Save

zParser data collection architecture - Fields selection

EPV Performance University 154

Select the SMF record from the EPV Dictionary area
Press the Target button below the EPV Dictionary area

zParser data collection architecture - Fields selection

EPV Performance University 155

Once added all the desired records, select Options, then
Save

zParser data collection architecture - Fields selection

EPV Performance University 156

• To select only some specific SMF fields inside an SMF
record:

Select the SMF record from the EPV Dictionary area

Press the Modify button below the EPV Dictionary area

Select the table from the middle area

Select the fields to remove and press the Remove
button

Once removed all the non necessary fields, press
Target

Once finished, select Options, then Save

zParser data collection architecture - Fields selection

EPV Performance University 157

 Select the SMF record from the EPV Dictionary area

Press the Modify button below the EPV Dictionary area

 Select the table from the middle area

 Select the fields to remove and press the Remove button

Once removed all the non necessary fields, press Target

zParser data collection architecture - Fields selection

EPV Performance University 158

 Once finished, select Options, then Save

zParser data collection architecture - CICS dictionary

EPV Performance University 159

• The monitoring control table (MCT) defines the user data
fields in CICS monitoring performance class records and
describes how they are manipulated at event monitoring
points (EMPs)

• It also controls which system-defined performance class
data fields are recorded

• It is put inside the SMF 110 records at every CICS restart

• EPV zParser automatically adapts its reading routines
accordingly to the MCT customizations the users make

zParser data collection architecture - CICS dictionary

EPV Performance University 160

• The EPV zParser’s reading routines about MCT are
stored by default in
EPVROOT/USERPROFILE/PROFILE_NAME/INPUT/EPV
ZPARSER_INPUT/CICS_MCT_DICTIONARY

zParser data collection architecture - CICS dictionary

EPV Performance University 161

• It is also possible to choose where to store these
reading routines in the Various Settings tab

• As well as SMF, other Input Engines are
available:

 DCOLLECT

 IMS

 z/VM

 BVIR

 CSV

 OPC

EPV Performance University 162

zParser data collection architecture - Input Engines

zParser data collection architecture - DCOLLECT

EPV Performance University 163

• zParser is able to read the following IDCAMS DCOLLECT
records
DCOLLECT_A -> “VSAM base cluster association name

information“
DCOLLECT_AG -> "Aggregate Group definition “
DCOLLECT_AI -> "Accounting Information “
DCOLLECT_B -> “Data Set Backup Version Information”
DCOLLECT_BC -> “Base Configuration Information”
DCOLLECT_C -> “Dasd capacity planning information”
DCOLLECT_CN -> “Sms cache names definition”
DCOLLECT_D -> “Active data set information”
DCOLLECT_DC -> “Data class construct information”

zParser data collection architecture - DCOLLECT

EPV Performance University 164

DCOLLECT_DR -> “Sms optical drive definition”

DCOLLECT_LB -> “Sms optical library definition”

DCOLLECT_M -> “Migrated data set information”

DCOLLECT_MC -> “Management class construct
information”

DCOLLECT_SC -> “Storage class construct information”

DCOLLECT_SG -> “Storage group construct information”

DCOLLECT_T -> “Tape capacity planning information”

DCOLLECT_V -> “Volume information”

DCOLLECT_VL -> “Sms volume definition”

EPV Performance University 165

• Only the following 2 types of DCOLLECT are provided
in LITE license:

DCOLLECT_D

DCOLLECT_V

• With Big Data and Full licenses, also a selection on
the fields can be done as described in the previous
slides

zParser data collection architecture - DCOLLECT

zParser data collection architecture - IMS

EPV Performance University 166

• zParser is able to read differenent kind of performance data
generated by Information Management System (IMS)

LOGIMS_0A -> “CPI-CI Driven Program“

LOGIMS_01 -> "Message queue record (message received
from a CNT).“

LOGIMS_03 -> "Message queue record (message received
from a PSB or IMS).“

LOGIMS_07 -> “Program Termination Accounting Record”

LOGIMS_08 -> “Program Schedule Record”

LOGIMS_31 -> “Message queue GU record”

LOGIMS_32 -> “Message queue reject record”

LOGIMS_33 -> “Message queue DRRN free record”

zParser data collection architecture - IMS

EPV Performance University 167

LOGIMS_34 -> “Message queue cancel record”
LOGIMS_35 -> “Message queue enqueue record”
LOGIMS_36 -> “Message queue dequeue record”
LOGIMS_37 -> “Message queue syncpoint transfer record”
LOGIMS_38 -> “Message queue syncpoint fail record”
LOGIMS_56FA -> “Transaction Level Statistics”
LOGIMS_59 -> “Fast path records (input message, output

message, dequeue message, syncpoint, syncpoint fail”
LOGIMS_CHKPTSTATS -> “Checkpoint Statistics”
LOGIMS_CHKPTVSAM -> “Statistics VSAM subpool”
LOGIMS_F9 -> “Program log record”
LOGIMS_FA -> “Transaction log record”

EPV Performance University 168

• Only the following 3 types of IMS logs are
provided in LITE license:
LOGIMS_56FA (DEFAULT)
LOGIMS_FA
LOGIMS_07/8

• With Big Data and Full licenses, also a
selection on the fields can be done as
described in the previous slides

zParser data collection architecture - IMS

zParser data collection architecture - z/VM

EPV Performance University 169

• zParser is able to read the following z/VM records produced by
the z/VM Monitor
ZVM_6_4 -> “Cache Activity Data“
ZVM_0_1 -> "System Data“
ZVM_0_2 -> "Processor Data“
ZVM_0_3 -> “Real storage allocation and use”
ZVM_0_5 -> “Expanded Storage Data Per Processor”
ZVM_0_14 -> “Assess use and benefits derived from expanded

storage”
ZVM_0_16 -> “CPU utilization data for logical partition”
ZVM_0_17 -> “CPU Utilization data for LPAR management”
ZVM_0_20 -> “Extended Channel Measurement Data”

zParser data collection architecture - z/VM

EPV Performance University 170

ZVM_1_4 -> “System Configuration”

ZVM_1_5 -> “Processor Configuration”

ZVM_1_6 -> “Device Configuration Data”

ZVM_1_7 -> “Memory Configuration Data”

ZVM_1_8 -> “Paging Configuration Data”

ZVM_1_9 -> “Sample Profile”

ZVM_1_17 -> “Expanded Store Data”

ZVM_3_4 -> “Auxiliary Storage Management”

ZVM_4_3 -> “User activity data”

ZVM_4_4 -> “User Interaction Data”

ZVM_6_3 -> “Device Activity”

EPV Performance University 171

• All the record types are provided in LITE licenses that
include EPV for zLinux product:

only EPV for zLINUX

only EPV for z/OS & EPV for zLINUX

only EPV for Db2 & EPV for zLINUX

only EPV for MQ & EPV for zLINUX

 EPV for: z/OS - Db2 - zLINUX

 EPV for: z/OS - zLINUX - MQ

 EPV for: Db2 - zLINUX - MQ

 EPV for: z/OS - Db2 - zLINUX - MQ

• With Big Data and Full licenses, also a selection on the fields
can be done as described in the previous slides

zParser data collection architecture - z/VM

zParser data collection architecture - BVIR

EPV Performance University 172

• zParser is able to read the following records produced by
IBM TS7700 VTS

BVIR020 -> “Vnode Virtual Device Container“

BVIR021 -> “Vnode Adapter Historical Record“

BVIR030 -> “Hnode HSM Historical Record“

BVIR031 -> “Hnode Export/Import Container”

BVIR032 -> “Hnode Library Historical Record”

BVIR033 -> “Hnode Grid Historical Record”

EPV Performance University 173

• All the record types are provided in LITE licenses that include
EPV for z/OS product:

only EPV for z/OS

only EPV for z/OS & EPV for Db2

only EPV for z/OS & EPV for zLINUX

only EPV for z/OS & EPV for MQ

 EPV for: z/OS - Db2 - zLINUX

 EPV for: z/OS - Db2 - MQ

 EPV for: z/OS - zLINUX - MQ

 EPV for: z/OS - Db2 - zLINUX - MQ

• With Big Data and Full licenses, also a selection on the fields
can be done as described in the previous slides

zParser data collection architecture - BVIR

EPV Performance University 174

• With Big Data and Full licenses, Tivoli Operations
Planning and Control (OPC) data can be read

• Information related to “OPC CURRENT PLAN” and
“OPC JOBS END”

zParser data collection architecture - OPC

zParser data collection architecture - CSV input files

EPV Performance University 175

• In case of Big Data or Full license, there is also the
possibility to load CSV files inside the zParser’s
database

• In order to do that you have to:

Configure the CSV Input Engine (define input folder
and fields separator)

Create the CSV files by following a few rules

Put the CSV files inside the zParser’s CSV input folder

EPV Performance University 176

• Configure the CSV Input Engine

zParser data collection architecture - CSV input files

EPV Performance University 177

• Define one or more input folders

zParser data collection architecture - CSV input files

EPV Performance University 178

• Choose the fields separator in the Various Settings
tab

zParser data collection architecture - CSV input files

EPV Performance University 179

• Once finished, select Options, then Save

zParser data collection architecture - CSV input files

EPV Performance University 180

• Create the CSV files by following a few rules

zParser data collection architecture - CSV input files

 The first four rows of the file have to contain the names and the
description of the variables as follows:
00 Variable name
01 Variable format
02 Variable description (It is not mandatory but we suggest to

use it; in case the row is missing the variable name is used as
description)

03 Flag of the end of the description part (e.g." 03;USR")
Use the field separator that you’ve previously configured
 The file name is used to create the table in the zParser database

EPV Performance University 181

• Example of a correctly-formatted CSV file with
semicolon as separator

zParser data collection architecture - CSV input files

00;USER;APPLICATION;DEPARTMENT;CITY;CONNECT_TIME
01;CHAR(8);VARCHAR(250);VARCHAR(64);DECIMAL(12.3)
02;User Name;Application Name;office department;City;duration of connection
03;USR
U129907;sales;account;London;8:20
U129955;sales;account;London;6:00
U449955;sales;marketing;Paris;9:00
U992255;payroll;organic;Rome;9:00

EPV Performance University 182

• zParser supports the following SMF user records:

 IBM Tivoli A/F Operator

BMC CONTROL-D

 IBM Hierarchical Storage Management (HSM)

Tape Activity Monitor

Syncsort MFX

CA-TPX

Oracle Virtual Tape Control System (VTCS)

 IBM Virtual Tape Server (VTS)

zCost

zParser data collection architecture - SMF user records

EPV Performance University 183

• In case of LITE license, only the following are
provided:

Oracle Virtual Tape Control System (VTCS)

IBM Virtual Tape Server (VTS)

• It is possible to configure the SMF record number for
each SMF record through the EPVAdvancedGUI.exe
program

zParser data collection architecture - SMF user records

EPV Performance University 184

• To configure the SMF record number, go inside the SMF Input
Engine section, click on the Various Settings tab

zParser data collection architecture - SMF user records

EPV Performance University 185

• Once finished, select Options, then Save

zParser data collection architecture - SMF user records

zParser basic

processing

EPV Performance University 186

ZVM

CSV

LOGIMS

BVIR

DCO

SMF

EPV zParser
on Windows /
Linux / zLinux

zParser data collection architecture - Overview

187

Mainframe
zParser DB on

MySQL/MariaDB /
MS SQL SERVER /

Impala on Hadoop

zParser basic processing - Daily flow

• As seen in the previous slides, the data collection can
be run once a day or multiple times during the day

EPV zParser
on Windows /
Linux / zLinux

zParser data collection architecture - Overview

188

zParser basic processing - Daily flow

• SMF data is being transformed into multiple TXT files, one
for each record type / subtype, and then loaded into the
database

zParser Work Area zParser database

EPV030_23_INTRVL.TXT EPV030_23_INTRVL

EPV070_1_CPU.TXT

EPV070_1_LPAR.TXT

EPV101_0_ACCOUNT.TXT

EPV116_0_MESSMAN.TXT

EPV070_1_CPU

EPV070_1_LPAR

EPV101_0_ACCOUNT

EPV116_0_MESSMAN

zParser data collection architecture - Overview

189

zParser basic processing - Daily flow

• In ‘Once a day’, the daily flow is very simple:
 Send the data once
 Start EPV (zParser and the other products) once

• In Continuous mode, the daily flow is a little bit more
complex:
 Send the data as soon as it is available or every x

minutes
 zParser automatically parse each file as soon as it

arrives on the EPV server and loads data inside the
database

 Start the other EPV products once

• How to use it

Prepare and send the input files to the EPV server
once a day

Run the whole EPV process by scheduling, for
example at 2 a.m., the ALLPHASES.BAT/sh program
in the task scheduler

EPV Performance University 190

zParser basic processing - Once a day

EPV Performance University 191

ALLPHASES.BAT/sh
Input
folder

SMF
files

Reader EndOfDay DB Deaccum

NIGHTBATCH.BAT/sh

Loader
ZPARSER

DB
ZPARSER
DB Clear

Mainframe

zParser basic processing - Once a day

EPV zParser

Other EPV products

• How to use it
Set the EPVzParserAgentsHandler program to start at

EPV server’s boot
Prepare and send SMF data to the EPV server as soon

as they’re available during the day
After each file transfer from MF to EPV server, send

also an empty file named like the file, plus the _END
suffix; this is to tell EPV that the file transfer is
complete. Example: filename SMF.TODAY, end-file
SMF.TODAY_END

Once all the SMF files of the day are sent, put the
STARTBTC flag file in one of the input folders

EPV Performance University 192

zParser basic processing - Continuous mode

EPV Performance University 193

EPVzParserAgentsHandler

Input
folder

SMF
files

Reader

EndOfDay DB Deaccum

Loader

ZPARSER_1 DB

ZPARSER_n+1 DB Clear

Mainframe

ZPARSER_2 DB

ZPARSER_3 DB

ZPARSER_x DB

Input
folder

STARTBTCMainframe

NIGHTBATCH.BAT/sh

zParser basic processing - Continuous mode

SMF files are sent multiple times per day. In this way,
when it’s time to start the reports production, there is
no need to wait for SMF data parsing

• zParser uses a number of pre allocated DB versions (from a
minimum of 2 to a maximum of 99) also called ‘Staging
DBs’

• The main purpose of using more than one database, is to
permit the continuity of processing by using these DB
versions in a cyclical way so that when the last version has
been written the cycle restarts from the first one

• The EPV_ParserConfig is a management DB. Its main
purpose it to store information about the status of the
‘Staging DBs’

• In specific, these information are contained in the
Loader_Status table

EPV Performance University 194

zParser basic processing - Continuous mode

• A DB can be in one of the following status:

PARSER: it indicates that zParser is writing into this DB

CLOSE: it indicates that it is impossible to use this DB
because other products (EPV z/OS and/or EPV Db2
and/or EPV MQ and/or zLINUX) are reading it. The
product that is using this DB is written in the “Run
Product” column

READY: it indicates that the data from this DB has
already been used so it is ready to be used again by
zParser; in this case the value in the “Run Product”
column is null

EPV Performance University 195

zParser basic processing - Continuous mode

EPV Performance University 196

zParser basic processing - Continuous mode

zParser basic processing - Agents

EPV Performance University 197

• When running in Continuous Mode, the
EPVzParserAgentsHandler process is the key

• EPVzParserAgentsHandler is a light weight task
running in background that manages all the zParser
related tasks

zParser basic processing - Agents

EPV Performance University 198

• Both in Windows and Linux, it can be installed as
System Service. This allows the user to manage this
process very easily

• It can also be managed through flag files

• Of course, flag files can also come from mainframe

zParser basic processing - Agents

EPV Performance University 199

• EPVzParserAgentsHandler main tasks

Create empty tables in the zParser’s database at
startup

Check for input data every 100 (default) seconds

Start one zParser pseudo-thread for each input file
for a maximum of $Max_threads parallel
processes (default is n.processors -1)

Start EPVzParserEndOfDay when the STARTBTC file
is being put in one input folder

zParser basic processing - Agents

EPV Performance University 200

• Flag files accepted

STARTBTC -> start the reports production

STARTMAINT -> start the automatic update process

STARTPAUSE -> start activities pause period

ENDPAUSE -> end activities pause period

SHUTDOWN -> close the process

RESTART -> restart the process

zParser basic processing - Reader/Loader

EPV Performance University 201

• EPVzParser process is split into 2 phases: the reader
and the loader

Reader, as the name suggests, reads the input file
and transforms the information in a more
understandable format inside TXT files

Loader, also as the name suggests, loads the TXT
files created by the reader in the zParser’s
database

zParser basic processing - Reader

EPV Performance University 202

• zParser Reader main tasks

Rename the input file in .Parsing; in this way, it is clear when
one file is being read by zParser

 Extract information contained in the input file by using hard
coded routines

Write in a specific WorkArea for each input file

Write only the information selected by the user and discarding
the rest

Move the input file in a temporary folder (Recovery) in case of
errors

Avoid to read duplicate files/records (see dedicated chapter
later)

zParser basic processing - Reader

EPV Performance University 203

• INPUT: SMF/DCO/IMS/etc.

• OUTPUT: for each SMF/DCO/IMS/etc. record
type/subtype

One TXT file containing data

One HDR file containing information about data
structure (fields types and length)

zParser basic processing - Reader

EPV Performance University 204

• Reader’s output

zParser basic processing - Loader

EPV Performance University 205

• zParser Loader main tasks

Check in which zParser database it has to load data by looking at
the Loader_Status table from EPV_ParserConfig database

Create table in the zParser database in case it is missing; in order
to do that, it uses the HDR files to generate the ‘create table’
scripts to execute

 Load each TXT file in its specific table by using these commands

LOAD DATA INFILE for MySQL/MariaDB

BULK INSERT for MS SQL Server

Move the input file in a temporary folder (Recovery) in case of
errors

Delete or move the input file when the loader ends

zParser basic processing - Loader

• INPUT: TXT/HDR files created by the Reader

• OUTPUT: one DB table for each TXT/HDR file

EPV Performance University 206

zParser basic processing - Loader

• Loader’s output

EPV Performance University 207

zParser basic processing - EndOfDay

EPV Performance University 208

• EPVzParserEndOfDay manages all the activities that
needs to be done once a day before reports
production

• In Once a day it is started by the ALLPHASES script

• In Continuous mode it is started by
EPVzParserAgentsHandler as soon as the STARTBTC
flag file arrives in one of the input folders

zParser basic processing - EndOfDay

EPV Performance University 209

• EPVzParserEndOfDay main tasks

Check if all the tables needed by the other EPV products are there
in the zParser’s database

Check if there is data inside these tables

 Execute EPVzParserDbDeaccum process

 In case of Continuous mode, it makes the Staging DBs switch by
putting the current zParser DB in CLOSE status and the next one in
PARSER status

Drop and re-create tables inside the new zParser’s DB that is just
being put in PARSER status

 Start the POSTZPARSER script (reports production)

zParser basic processing - Db Deaccum

EPV Performance University 210

• EPVzParserDbDeaccum process is meant to normalize
data that is natively written accumulated. The obtain the
new value, the process starts from the last record and
then it subtracts the previous record; this behavior is
applied to each record in the table

• It creates new tables with _deacc suffix

• It also detects duplicated records and it can automatically
remove them (see dedicated chapter)

• It is run just once a day by EPVzParserEndOfDay program

zParser basic processing - Db Deaccum

EPV Performance University 211

• It normalizes data for the following tables

SMF
EPV030_6_AddrSp
EPV113_2_HDCap
EPV100_0_Stat0
EPV100_0_RemLoc
EPV100_1_GBPools
EPV100_1_Stat1
EPV100_1_Bpools

zParser basic processing - Db Deaccum

EPV Performance University 212

• It normalizes data for the following tables

ZVM

D00R01_MRSYTSYP

D00R14_MRSYTXSG

D00R16_MRSYTCUP

D00R17_MRSYTCUM

D00R02_MRSYTPRP

D00R05_MRSYTXSP

D00R20_MRSYTEPM

D03R04_MRSTOASP

D04R03_MRUSEACT

D04R04_MRUSEINT

D06R03_MRIODDEV

zParser advanced
processing

EPV Performance University 213

zParser advanced processing - Duplicated data controls

EPV Performance University 214

• A major issue with daily collection of large amount of
data is the possibility that the same data are loaded
more than one time. This is normally due to errors in
procedure design or to anomalies in host batch
processing so it should be fixed at that level.

• However, zParser provides some controls that the
user can activate in order to avoid collecting
duplicated data

zParser advanced processing - Duplicated data controls

EPV Performance University 215

• EPV zParser provides three levels of control to avoid
duplicated data to be collected in the database:

Level 1: to avoid the same input file is loaded more
times

Level 2: to avoid that the same input data in different
files will be loaded more times

Level 3: to avoid that the same input data even in the
same files will be loaded more times

zParser advanced processing - Duplicated data controls

EPV Performance University 216

zParser advanced processing - Duplicated data controls

EPV Performance University 217

• Level 1 control can be activated/deactivated by setting the
$CHKDUP_SAME_FILE parameter in the CONFIG.PL
member. The default value is Y (control activated). You can
set it to N to deactivate this control

• If the Level 1 control is activated, EPV zParser reads the first
112 bytes of each Dcollect, IMS or SMF file. This string is
then compared with the contents of a perl DB
(firstbytes.db); if that string is already there for the same
system-id, the file is marked as DAP (Dump Already Parsed)
and then moved to the BadRecovery folder

zParser advanced processing - Duplicated data controls

EPV Performance University 218

• Level 2 control can be activated/deactivated by setting the
$CHKDUP_MORE_FILES parameter in the CONFIG.PL member.
The default value is N (control deactivated). You can set it to Y
to activate this control.

• If the Level 2 control is activated, for each input file and for
each system-id and record type inside the input file, the
highest and the lowest timestamps are stored in a control file

• At the beginning of each file processing, this control file is
being loaded into an indexed table on a memory resident DB
and accessed through the SQL standard language

zParser advanced processing - Duplicated data controls

EPV Performance University 219

• For each record that is read, the following query is
executed: SELECT RECTYPE FROM ARCHTIME WHERE
SYS='$system' AND RECTYPE='$rectype' AND ENDINTRV
>= '$intrvl' AND STARTINTRV <= '$intrvl’. $system,
$rectype and $intrvl are the system, record type and
timestamp of the record. If the query returns at least one
record, zParser assumes that this record was already
loaded and, so, it discards the record

• When duplicated records are discarded, “Duplicated
records skipped" is written in the note column of the
record summary report provided in the zParser log for
each processed file

zParser advanced processing - Duplicated data controls

EPV Performance University 220

zParser advanced processing - Duplicated data controls

EPV Performance University 221

• Level 3 control can be activated/deactivated by setting the
$CHKDUP_INSIDE_ONEFILE parameter in the CONFIG.PL
member. The default value is N (control deactivated). You can
set it to S or Y to activate this control

• Whatever value you set in the above parameter, at
EPVzParserDbDeaccum beginning, a check of duplicate rows
is executed on the following tables:

 epv070_1_cpu

 epv100_0_stat0

 epv115_1_si

zParser advanced processing - Duplicated data controls

EPV Performance University 222

• If duplicated records are found in the above tables,
the behaviour depends on the
$CHKDUP_INSIDE_ONEFILE setting:

with N a warning message is written in the log and
process continues

with S an error message is written in the log and
process stops

with Y duplicated data are automatically removed
from all the following tables

zParser advanced processing - Duplicated data controls

EPV Performance University 223

zParser advanced processing - User Exits

EPV Performance University 224

• For each Input Engine it is possible to define two
levels of user exists:

Input, that are executed during the reading of
input data

Output, that are executed during the production
of the TXT files

zParser advanced processing - Input User Exit

EPV Performance University 225

• Users can write here their own Perl code to filter
some data during the reading of the input files

• EPV Support can help them because they’re familiar
with Perl

• This kind of user exit is applied to all record
types/subtypes

zParser advanced processing - Input User Exit

EPV Performance University 226

• To customize, open one Input Engine section and
click on the SMF USEREXIT Management

zParser advanced processing - Input User Exit

EPV Performance University 227

• Once written the Perl code, click on Code Check to make an
analysis on the syntax and then Store USEREXIT to confirm

EPV Performance University 228

• Once finished, select Options, then Save

zParser advanced processing - Input User Exit

zParser advanced processing - Output User Exit

EPV Performance University 229

• Users can write here their own Perl code to filter
some data during the writing of the TXT files

• EPV Support can help them

• This kind of user exit is applied to specific record
types/subtypes selected by the user

zParser advanced processing - Output User Exit

EPV Performance University 230

• To customize, open one Input Engine section and click on the
SMF USEREXIT Management, then SMF Output USEREXIT

• Select the record type in which you want to apply the user exit

zParser advanced processing - Output User Exit

EPV Performance University 231

• Once written the Perl code, click on Code Check to make an
analysis on the syntax and then Store USEREXIT to confirm

EPV Performance University 232

• Once finished, select Options, then Save

zParser advanced processing - Output User Exit

zParser advanced processing – User Fields

EPV Performance University 233

• For each Input Engine it is possible to define user
fields in each zParser table

• To customize, open one Input Engine section and
click on the SMF VARIABLES Management

zParser advanced processing – User Fields

EPV Performance University 234

EPV Performance University 235

• Once finished, select Options, then Save

zParser advanced processing - User Fields

Processing controls

EPV Performance University 236

Processing controls - Logging

EPV Performance University 237

• Every zParser action is being written to a specific log
inside
EPVROOT/USERPROFILE/PROFILENAME/LOGS/EPVZP
ARSER_LOGS

• Inside this folder, one subfolder for each day is
created. In this example: 15th, 16th, 23rd, 26th of
February 2018

Processing controls - Logging

EPV Performance University 238

• For each input file that is elaborated, one log is
created

Processing controls - Logging

EPV Performance University 239

• Log name is composed by different parts divided by _

Program
Name

Input
Engine

Work
Folder

Input File
Name

Elaboration
Timestamp

EPVzParser SMF WorkAG0 CICS_D100915.H171706 h13m57s29

Processing controls - Logging

EPV Performance University 240

• These log files contain various important information
about the zParser activity. First, all the current
parameters are listed

Processing controls - Logging

EPV Performance University 241

• Scrolling down in the log…

Maint file location

Product version

Convert::EPV390 version (parsing engine)

License information like Type, Customer Name,
Expiration..

Processing controls - Logging

EPV Performance University 242

• Scrolling down in the log…

Start message for the reading phase

Again.. Product version

Work area location

Information about the eventual file compression
(in this case the file wasn’t compressed)

Processing controls - Logging

EPV Performance University 243

• Scrolling down in the log…

 System that run the IFASMFDP command

Header/trailer timestamp

 For each system contained in the file, lower/higher
timestamp

Dump Time: a unique identifier of this specific SMF file,
composed by the SYSTEM and the SMFTIME fields

Processing controls - Logging

EPV Performance University 244

• Scrolling down in the log…

 For each record type/subtype: %, number of records, MB
size, % Size, note

Processing controls - Logging

EPV Performance University 245

• Scrolling down in the log…

 In the note section it is possible to find:

Skip, used only for statistics

Skip, not supported yet

Skip, duplicated

Skip by user choice

Read and store

Processing controls - Logging

EPV Performance University 246

• Scrolling down in the log…

Parsing rate expressed in MB/second

End message for the reading phase

Processing controls - Logging

EPV Performance University 247

• Scrolling down in the log…

 Start message for the loading phase

 If you’re still confused about the product’s version..
product version!

Database connection parameters

 For each table, number of inserted rows

Processing controls - Logging

EPV Performance University 248

• Scrolling down in the log…

Number of tables that were not loaded because of
missing data in the input file

End message for the loading phase

Processing controls - Logging

EPV Performance University 249

• Other component logs are provided:

EPVzParserAgentsHandler

EPVzParserEndOfDay

EPVzParserDbDeaccum

EPVzParserDbClear

Processing controls - Focal Point

EPV Performance University 250

• Checking log by log if all the processes are running
fine could be… Frustrating for small customers,
impossible for big customers

• This is why we created EPV Focal Point: to make an
automatic analysis of ALL the product’s log and
report the current status in an easy-to-understand
format (HTML report)

Processing controls - Focal Point

EPV Performance University 251

• In Once a day mode, it is created by the ALLPHASES
script and updated by each product that is run during
the process

• In Continuous mode, it is updated by the
EPVzParserAgentsHandler every 100 (default)
seconds

• Its name is EPVFocalPoint.HTML and it is located in
EPVROOT/USERPROFILE/PROFILENAME/LOGS

Processing controls - Focal Point

EPV Performance University 252

• Focal Point home page

Processing controls - Focal Point

EPV Performance University 253

• EPV running processes

Processing controls - Focal Point

EPV Performance University 254

• Configuration parameters

Processing controls - Focal Point

EPV Performance University 255

• DB disks space details

Processing controls - Focal Point

EPV Performance University 256

• zParser dedicated section

Processing controls - Focal Point

EPV Performance University 257

• zParser dedicated section – Details column

Processing controls - Focal Point

EPV Performance University 258

• zParser dedicated section – Other useful information

Processing controls - Focal Point

EPV Performance University 259

• zParser dedicated section – Input folders

Processing controls - Focal Point

EPV Performance University 260

• zParser dedicated section – Loader_Status table

Processing controls - Focal Point

EPV Performance University 261

• zParser dedicated section – Read/stored records

Processing controls - Focal Point

EPV Performance University 262

• zParser dedicated section – Archive_StageDB table

Processing controls - Focal Point Mobile

EPV Performance University 263

• If users want to remotely check the EPV status with
their smartphones, there’s also this possibility thanks
to a new responsive set of HTML pages

• Users can choose where to put them:

 EPV server

 Remote folder

 FTP folder

Processing controls - Focal Point Mobile

EPV Performance University 264

• Only the most important pages:

 Focal Point home page

 One page for each EPV product

 EPV zParser Input Folders

 EPV Running Processes

 EPV zParser DBs Status (only in ‘Continuous
Mode’)

Processing controls - Focal Point Mobile

EPV Performance University 265

• Focal Point Mobile home page

Processing controls - Focal Point Mobile

EPV Performance University 266

• Focal Point Mobile – Menu button

Processing controls - Focal Point Mobile

EPV Performance University 267

• zParser specific section

Processing controls - Focal Point Mobile

EPV Performance University 268

• Direct access to error logs

Processing controls - Focal Point Mobile

EPV Performance University 269

• Input folders – Pinch or double tap to zoom

2017-12-31 at h14m34ms12

Processing controls - Focal Point Mobile

EPV Performance University 270

• EPV Running Processes

2017-12-31 at h14m34ms12

Processing controls - Focal Point Mobile

EPV Performance University 271

• zParser’s databases status (continuous mode)

2017-12-31 at h14m34ms12

Processing controls - E-mail alerting

EPV Performance University 272

• Another way to control the processing is e-mail

• Users can customize zParser to send the textual
version of the Focal Point

Once a day after the end of the reports
production

Once a day after the end of the reports
production but just in case of errors

Multiple times per day

Processing controls - E-mail alerting

EPV Performance University 273

• To activate the automatic sending of e-mail once a
day after the reports production, customize
EPVROOT/PRODUCTS/EPVZPARSER_V14/PARSER_AG
ENT/ EPVFocalPoint_USER_EXIT.PL

Processing controls - E-mail alerting

EPV Performance University 274

 To send e-mails about the status of EPV multiple
times per day, users can also schedule their own e-
mail tools to send

EPVFocalPointForMail.TXT -> e-mail body

EPVFocalPointForMail_OBJECT.TXT -> e-mail
object

• EPVFocalPointForMail.TXT is the textual version of
the Focal Point and it is updated every 100 (default)
seconds when in Continuous mode

• These files are located in
EPVROOT/USERPROFILE/PROFILENAME/LOGS/

Processing controls - E-mail alerting

EPV Performance University 275

• EPVFocalPointForMail.TXT

Data recovery

EPV Performance University 276

Data recovery - Recovery & BadRecovery

EPV Performance University 277

• During the parsing process (reader or loader) many
temporary problems could occur:

Work area disconnection (if remote)

Antivirus scansion

Missing database connection

• When in Continuous mode, by default, an automatic
process of data recovery is executed in case of errors

Data recovery - Recovery & BadRecovery

EPV Performance University 278

• This automatic process consists in moving the input
file from the originary input folder to another input
folder called “Recovery” where zParser will try again
to elaborate the file

• If the problem occurs again, the file is being moved
in a trash folder called “BadRecovery”

• Recovery and BadRecovery folders are provided for
each Input Engine (SMF, DCO, IMS, …)

Data recovery - Recovery & BadRecovery

EPV Performance University 279

• So, having SMF files inside the “BadRecovery” folder
always indicates that something went wrong

Data recovery - Restart procedures

EPV Performance University 280

• When running in Once a day mode the following type
of restart scenarios may happen:

Reloading the input files in error

Restarting the other EPV products processing

Data recovery - Restart procedures

EPV Performance University 281

• Reloading the input files in error:

Restart the ALLPHASES script

• Executing the single steps:

EPVzParserDbClear

EPVzParser_And_DbFill_ZOS

EPVzParserDbDeaccum_ZOS

NIGHTBATCH

Data recovery - Restart procedures

EPV Performance University 282

• Restarting the other EPV products processing (restart
NIGHTBATCH)

• The following restart procedures are provided for
Windows/Unix environments:

RESTART_NIGHTBATCH_xxx.BAT resumes all EPV
phases from the step gone in error.

FORCE_NIGHTBATCH_xxx.BAT restarts all EPV
phases from the beginning.

XXX can be: ZOS, Db2, ZGRAPH, MQ, ZLINUX

Data recovery - Restart procedures

EPV Performance University 283

• When running in Continuous mode the following
type of restart scenarios may happen:

Restarting the EPVzParserAgentsHandler

Reloading files in error

Restarting the other EPV products processing

Data recovery - Restart procedures

EPV Performance University 284

• If, for any reason, EPVzParserAgentsHandler is not in
your system task manager, you need to start it again

• In case it is installed as system service:

Windows: open the Services panel, select
EPVzParserAgentsHandler, then click on START

Unix: run command service epv start

• In case it is not installed as system service simply run
EPVzParserAgentsHandler.BAT/sh under
EPVROOT/USERPROFILE/PROFILENAME/EPVZPARSER
/PROCS/AGENT_PROCS

Data recovery - Restart procedures

EPV Performance University 285

• If, for example, you need to apply some customization, you
may need to restart the EPVzParserAgentsHandler

• In case it is installed as system service:

Windows: put the SHUTDOWN flag file in one of the input
folders. Once you don’t see anymore the process in the
Task Manager, open the Services panel, select
EPVzParserAgentsHandler, click on STOP and then on
START

Unix: put the SHUTDOWN flag file in one of the input
folders. Once you don’t see anymore the process running,
run the command service epv stop, then service epv start

• In case it is not installed as system service, simply put the
RESTART flag file inside one of the input folders

Data recovery - Restart procedures

EPV Performance University 286

• As seen in the “Recovery & BadRecovery” slides, it
may happen that some files are moved into the
BadRecovery folder

• In these cases, maybe a fix from EPV is needed. Once
the issue is fixed, users must manually move the files
from the BadRecovery to an input folder

zParser for Big Data

EPV Performance University 287

zParser for Big Data - Parameters

EPV Performance University 288

• With Big Data license, some settings about the
zParser architecture can be customized

• For example, users could make the reading phase on
one server and the loading phase on another server

zParser for Big Data - Parameters

EPV Performance University 289

• This is possible because, after the reading phase, all the
TXT/HDR files related to an input file can be compressed in a
folder decided by the user and then also be sent via FTP

zParser for Big Data - Parameters

EPV Performance University 290

• Splitted Work Areas allows the user to divide the I/O
generated by the parsing process on multiple disks

zParser for Big Data - Loading data in Hadoop

EPV Performance University 291

• Real life example at a customer’s site

zParser for Big Data - Loading data in Hadoop

EPV Performance University 292

• Lots of input files produced during the day and sent to the
EPV server where they start the reading phase and the
TXT/HDR zip

zParser for Big Data - Loading data in Hadoop

EPV Performance University 293

• After zip phase, two phases are executed in parallel: the
loading phase in MySQL and the TXT/HDR unzip by Flume

zParser for Big Data - Loading data in Hadoop

EPV Performance University 294

• On one side, Flume handles TXT/HDR flow through Kafka
that physically inserts data in Hadoop’s HDFS

• On the other side, the standard EPV flow is executed

zParser for Big Data - Loading data in Hadoop

EPV Performance University 295

• This is a sample query made with Impala on the data
inserted in Hadoop’s HDFS

zParser for Big Data - Loading data in Hadoop

EPV Performance University 296

• In the near future, EPV is planning to support direct data
ingestions in Impala

• This will be made in three steps:
 TXT/HDR production during the reading phase
 TXT/HDR move to Hadoop’s HDFS
 TXT/HDR load in Impala by using the LOAD DATA

INPATH command

z/OS Data Collection

End

EPV Performance University 297

