
In-Memory Trends and
Db2 for z/OS
Larry Strickland

DataKinetics

November 2018

Session LF

https://twitter.com/gseukc
https://www.linkedin.com/groups/1741877
https://www.facebook.com/pages/Guide-Share-Europe-UK-Region/174907039241415

Introduction

Larry Strickland

Chief Products Officer

In-Memory Trends and Db2 for z/OS

• Industry Trends

• In-Memory Benefits

• In-Memory Database Systems

• Db2 12 for z/OS In-Memory Capabilities

• In-Memory Tables

Industry Data Trends

• The amount of data we store and manage continues to expand at a
rapid pace

• The pace accelerates as we access data

• Organizations are looking to process, analyze, and exploit this data
accurately and quickly

And This Growth Will Continue

How Do We Manage It?

• Just live with increasing costs and decreasing customer satisfaction?

• Or do something about it – leveraging the fastest data storage we
have – memory

Memory Costs are Decreasing

• Although the concept of in-memory processing has been around for a
long time, the falling price of RAM and growing use cases have led to
a new focus on in-memory techniques and processing

• Total cost of ownership can be lowered if you can reduce your
hardware footprint using in-memory techniques

• Operating costs may also be cut by reducing maintenance needs

• Cloud options may allow you to move from fixed to variable expenses

• In-memory technology can bolster performance and possibly even
change business processes

Disk Access is Much Slower Than
Memory Access
• It is orders-of-magnitude more efficient to access

data from memory than it is to read it from disk

• Disk I/O is an expensive operation

• Memory access is usually measured in microseconds,
whereas disk access is measured in milliseconds
• 1 millisecond equals 1000 microseconds

• Avoiding I/O improves performance because there is
a LOT going on “behind the scenes” when you
request an I/O

What is Involved in an I/O Operation?

Source: An I/O White Paper,
 http://idcp.marist.edu/pdfs/ztidbitz/An_IO_WhitePaperForZ.pdf

Benefits of Memory

• CPU efficiency is improved with large memory
when paging is avoided

• Batch workload processing time can be reduced

• For OLTP workloads, large memory provides
substantial latency reduction, which leads to
significant response time reductions
and increased transaction rates

Source: Benefits of Configuring More Memory in the IBM z/OS Software Stack,
 IBM RedPaper, REDP-5238-01, January 2017

In-Memory Use Cases

• In-memory techniques can optimize processes where large amounts
of data, complex operations, and business challenges require real-
time support

• Look for areas where instantaneous information can improve decision
quality; in-memory processing can improve the speed of decision-
making

• Analytics is likely to drive in-memory but its usefulness is not limited
to analytical processing. Consider also transactions, long-running
batch, and data warehousing
• Requires modifying existing processes to take advantage of in-memory which

can be time-consuming

IMDBMS:
In-Memory Database Management System
What is an In-Memory DBMS (IMDBMS)?

• An in-memory database (IMDB) is a database management system
that primarily depends on main memory for storing data

• IMDBs are quicker

• IMDB eradicates disk access

Source: Technopedia,
 https://www.techopedia.com/definition/28541/in-memory-database

IMDBMS: Benefits and Disadvantages

Benefits of In-Memory DBMS
• Performance
• Remove overhead related to translation and caching of data
• Use significantly less CPU
• This can deliver faster transaction processing
Disadvantages of In-Memory DBMS
• Although memory cost is dropping it is still more expensive

than disk
• Lack of IT expertise
• Limitations on database size due to amount of memory

available
Source: How to determine if an in-memory DBMS is right for your company,
 TechTarget 2017

Examples of In-Memory DBMS Offerings

• Aerospike
• Flash-optimized open source NoSQL DBMS

• Altibase
• Proprietary, general purpose IMDBMS with full ACID

• MemSQL Enterprise
• Distributed in-memory SQL IMDBMS with full ACID

• Oracle TimesTen
• In-memory relational database

• SAP HANA
• In-memory, column-oriented RDBMS from SAP

• VoltDB
• Michael Stonebraker’s IMDBMS offering

Additional examples: https://en.wikipedia.org/wiki/List_of_in-memory_databases

What About Db2’s In-Memory Capabilities?

Db2 12 for z/OS

• There are many new features in Db2 12 for z/OS
that exploit in-memory techniques

• So much so that analysts at Gartner have called
Db2 for z/OS an “in-memory” DBMS

• We will examine these new features in detail:
• Index Fast Traversal Blocks (FTBs)

• New Fast Insert Algorithm

• Contiguous Buffer Pools

• In-Memory Sort Processing

Index FTBs

• Fast Traverse Blocks (FTBs)
• Unique indexes can be stored in-memory

• The key size must be 64 bytes or less

• Stores only the high-level pages, not leaf pages

• Unique indexes with INCLUDE columns are also
supported in the FTB

• Using FTBs for index traversal is much faster than
doing traditional page-oriented page traversal for
indexes that are cached in buffer pools

Where are FTBs Stored?

FTB Candidates

• Any index that is used predominantly for read
access by way of key lookups
• Also INSERT, UPDATE, and DELETE

• The best candidates for using FTB are:
• Indexes that support heavy read access,

• Indexes on tables with a random insert or delete pattern

• Indexes with high PCTFREE

FTB Performance Measurements

1. Random index access by using single thread
random select/insert/delete

• PBG table space with 1 unique index, key size < 64 bytes, 5 levels

• Class 2 CPU time decreases, between 8.5% and 22.4%

2. Sequential index access
• PBG table space with 1 unique clustering index with a 56-byte key

• CPU time change was insignificant (between +2% and -2%)

3. IBM Brokerage Workload
• FTB set to AUTO

• 12 fewer GETPAGEs per COMMIT

Source: IBM Db2 12 for z/OS Performance Topics (SG24-8404)

FTB Summary

• FTBs enable more index data to be stored in memory

• FTBs can improve performance of queries that rely on unique indexes

• The greater the number of levels in the index, the greater the
expected CPU savings will be
• Initial measurements as published by IBM in the Db2 12 for z/OS Technical

Overview indicate CPU savings varies from about 8% for a two-level index to
23% for a five-level index

New, Fast Insert Algorithm

Fast Insert Algorithm (aka Insert Algorithm 2)

• New INSERT algorithm for journaling workload
• Data is unclustered, just added to the end of the space

• Not for standard, try-to-keep-things-clustered workloads

• Requires MEMBER CLUSTER and UTS
• Only available for Universal table spaces

• MEMBER CLUSTER minimizes data sharing overhead for
an INSERT-heavy Db2 table (space map management)

New, Fast Insert Algorithm

• How it works
• An in-memory structure called an Insert Pipe is used to control INSERTs across

data sharing members

• Insert Algorithm 2 uses an asynchronous background system task

• The Insert Pipe is filled asynchronously

New, Fast Insert Algorithm:
Insert Algorithm 2
• Performance

• Can improve INSERT throughput, especially when data is
not indexed

• Can also lower logging activities and reduce class 2
elapsed time and class 2 CPU time

• Benchmarking tests by IBM showed a high potential
for performance improvement for the right use cases
• Workloads that are constrained by lock/latch contentions

on the space map pages and data pages are likely to
benefit more from it

Use Cases for Fast Insert

• High rate of concurrent INSERTs into a journal or audit table
• When rows cannot be inserted quickly enough using the standard INSERT

algorithm, performance suffers:

• Insert Algorithm 2 use cases include tracking data for regulatory compliance,
writing out access details, etc.

Insert Algorithm 2:
Performance Measurement
Test1: Insert with no indexes defined

• Two-way data sharing environment with group buffer pool-
dependent objects

• Two tests were run:
• The insert rate showed an 18% improvement

• The class 2 elapsed time per transaction reduced by 54%

• The Db2 class 2 CPU time per transaction decreased by approximately 15%

Source: IBM Db2 12 for z/OS Performance Topics (SG24-8404)

Insert Algorithm 2 Performance
Measurement (cont.)
Test 2: Insert with indexes defined

• Same setup but test were run with one, two, and three indexes
defined

• The tables were clustered, so all the rows are inserted in the order of
their sequential keys.

• The insert rate improved by 26%

Test 3: Random Insert and Delete

• Same setup but with random inserts (not journaling) and deletes

• No significant difference

Source: IBM Db2 12 for z/OS Performance Topics (SG24-8404)

Contiguous Buffer Pools

• Contiguous Buffer Pools
• In-memory pools are treated as a single block of storage

• They do not require chain maintenance

• Ideal for code tables and frequently used smaller tables
• Stable data

• Set up using the PGSTEAL parameter of the buffer pool

Using Contiguous Buffer Pools

• Which tables are good candidates for contiguous Buffer Pools?
• The table or index should be able to fit entirely within the buffer pool

• Objects should be referenced frequently with a high number of GETPAGEs

• Identifying high GETPAGEs:
• New RTS column GETPAGES in RTS tables

• GETPAGE intensity is important, too

Contiguous Buffer Pools Performance
Measurements
• OLTP workload

• First test done with buffer pools having a high GETPAGE
count configured to use Contiguous Buffer Pools

• Second test done with the buffer pool setting changed
to default settings, but using the same VPSIZE

• Class 2 elapsed time reduced 7%

• Db2 class 2 CPU time decreased by 8%

In-Memory Sort Processing

• In-memory sort processing
• Increased max number of nodes available for sort tree

• By increasing in-memory sorting you can avoid writing intermediate
SORTWORK files to disk

• Limited number of nodes could also effectively cap the sort pool size

• These enhancements can require more memory, but
can result in a reduced CPU

Sort Performance Measurements

• In-memory sorts that previously required work files for sort and
merge processing
• 75% reduction in CPU time

• Increased sort pool size
• 50% reduction in elapsed time and CPU time

Source: IBM Db2 12 for z/OS Performance Topics (SG24-8404)

Sort Performance Measurements (cont.)

• SAP workloads
• SAP CDS Fiori: 5% CPU time reduction for several queries

(1% CPU time reduction across the entire workload)

• SAP CDS FINA: 1.8% reduction in CPU time for the entire workload
(12% reduction in the total number of GETPAGEs)

• IBM Retail Data Warehouse
• Two queries: 14% and 6% CPU time reduction

Source: IBM Db2 12 for z/OS Performance Topics (SG24-8404)

Db2 12 In-Memory Synopsis

• Db2 12 provides significant new in-memory capabilities:
• Index Fast Traversal Blocks (FTBs)

• New Fast Insert Algorithm

• Contiguous Buffer Pools

• In-Memory Sort Processing

• After hearing about these features, Gartner analysts would refer to
Db2 for z/OS as an IMDBMS

Other In-Memory Techniques

• There are numerous techniques you can use to expand
your usage of memory
• Working storage memory

• Use of z/OS storage (ECSA)

• Dataspaces

• Above the bar storage

• Use a vendor product that handles it for you

High-Performance In-Memory Technology

• What is high-performance In-memory technology?
• An in-memory accelerator for mainframe applications

• Dramatic improvements for existing applications

• Doesn’t replace your existing database – it complements it

• Example: DataKinetics tableBASE

tableBASE In-Memory Technology

• How does it work?
• Uses a much shorter code path to access data

• Top path is a typical DBMS code path
(typ. 10,000 to 100,000 machine cycles)

• Bottom path is the high-performance in-memory code path, 20x faster
(typ. 400-500 machine cycles)

High-performance In-memory Results

Elapsed Time and CPU Reduction Example

SDSF output showing job status – original (BEFORE) and afterwards, using tableBASE (AFTER):

How Fast? IBM Benchmark Results for Db2

• Two systems tested – one accessing data using Db2 with buffers, one accessing data using Db2 with
tableBASE high-performance in-memory technology

• Improvements are made without changes to Db2 systems, and without changes to application logic

Summary

• Data growth continues unabated – using memory can
make a difference

• Cost of memory is decreasing it more cost-effective

• IMDBMS are gaining popularity – both new and old

• Db2 for z/OS is gaining significant in-memory capabilities

• There are other 3rd-party solutions that can be added to
further take advantage of in-memory performance gains

Q&A

We want your feedback!

• Please submit your feedback online at ….
http://conferences.gse.org.uk/2018/feedback/lf

• Paper feedback forms are also available from the Chair person

• This session is LF

