

How many GCP MSU is my CF \$tealing?

Wednesday 8th November, 2017 (10:45 – 11:45)

Session LK in Woodcote

Donald Zeunert@BMC.com

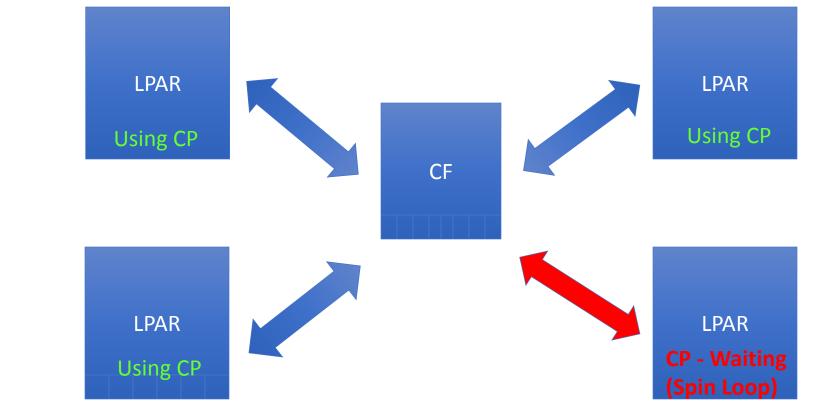
TOPICS


Coupling Facility Induced Spin Loop? (CoFiSL)

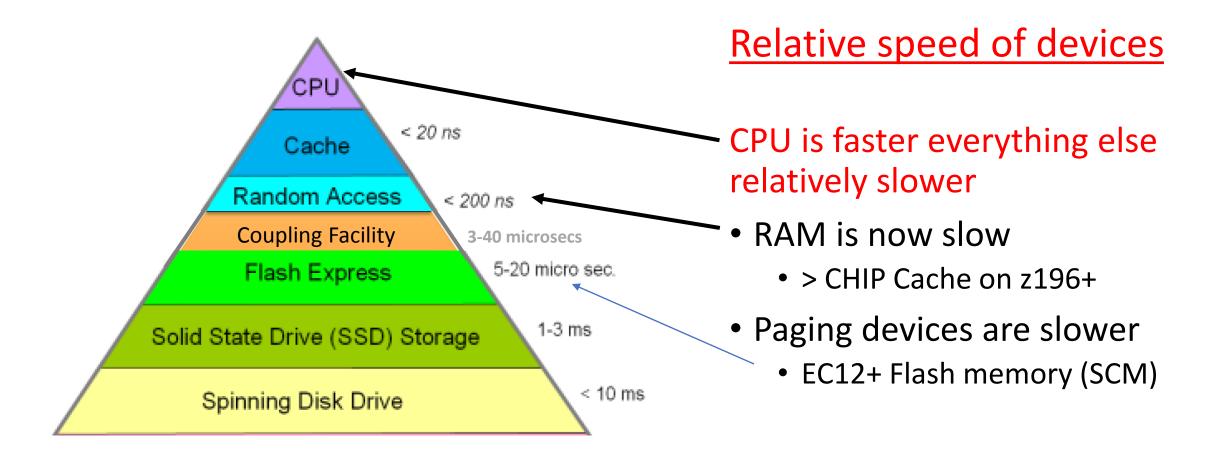
- CoFiSL What is it?
- Determining Impact to MLC and CPC Costs
- Reducing Impact
 - Software changes –
 - Hardware changes –
 - Workload Changes –

The Coupling Facility

- **SYSPLEX** highly scalable & available, cluster of LPARs sharing resources.
 - **Coupling Facility (CF)** a critical component for joining resource sharing performance and efficiency.
 - Efficiency Concern response and volume of Synchronous requests
- Major Synchronous requestors are:
 - DB2 Data Sharing,
 - IMS data sharing
 - VSAM Record Level Sharing,
 - GRS



CoFiSL - Overview


CF reply.

Time Critical Requests – are 'Synchronous' Requests, the GCP waits for the

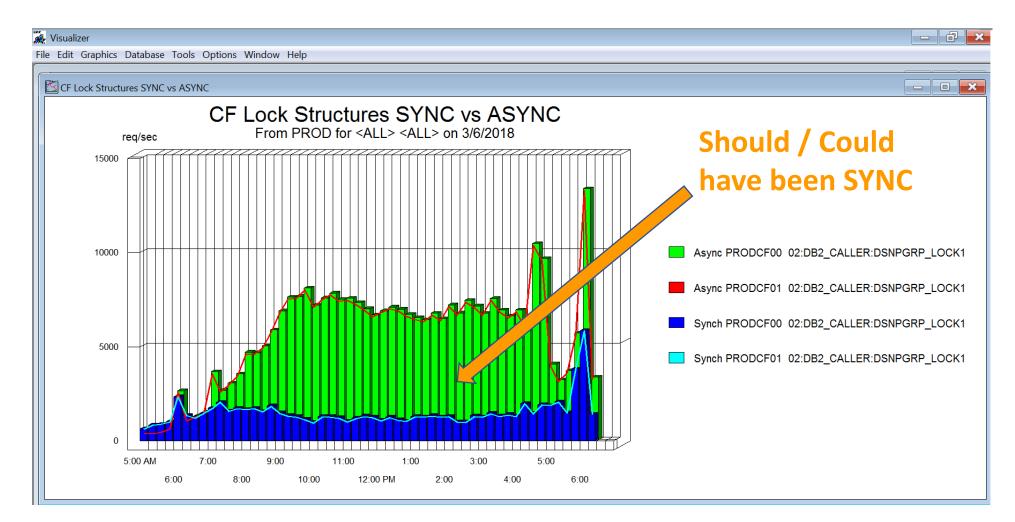
Why should I care Now?

Requests Converted (Un / Reported)

RMF / CMF Request Converted # From No CF Subchannels Available

- Immediate SYNC requests
 - *Spin* waiting for the next available subchannel in most cases
- Converted to ASYNCH requests
 - Some locking requests eligible
 - **Unlikely** with modern CF links with > 32 subchannels per CHPID

XES "Heuristic" Convert -HighSrvTm


- Req Converted # 0
- Reported as ASYNC
 - Expected SYNC as ASYNC Look for w/o request converted count

• SYNC Queue Subchannel –

- May queue Some locking and IXLSYNCH operations
 - Reduces Spin Loop

XES Converted – Avoid GCP Spin Duplexed Example

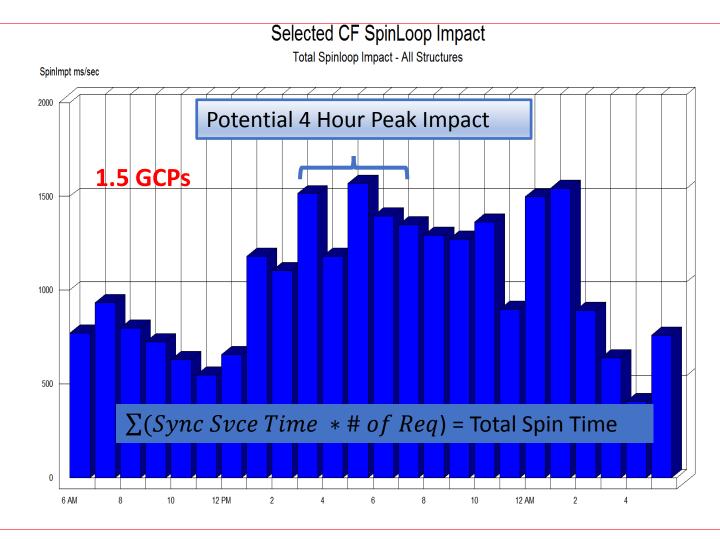
SE Determining Impact

How much is CF spin loop costing me?

8

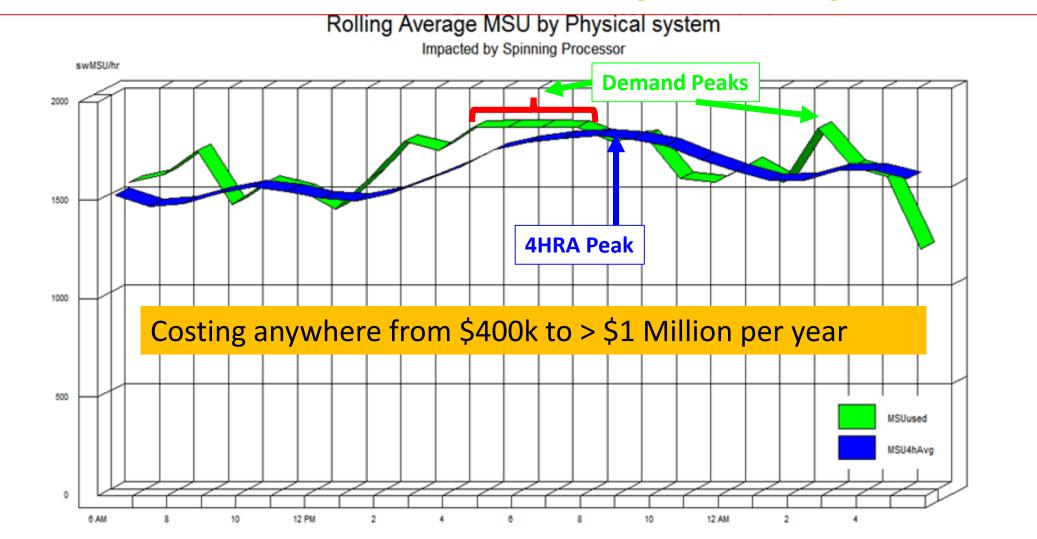
CF spin loop costs

- GCP MSUs from Spin loops -
 - 4HRA peak CPC / CMP / LPAR?
 - Demand Peak?


• SYNC Service times

- Normal What % do they deviate from;
 - Expected
 - Best

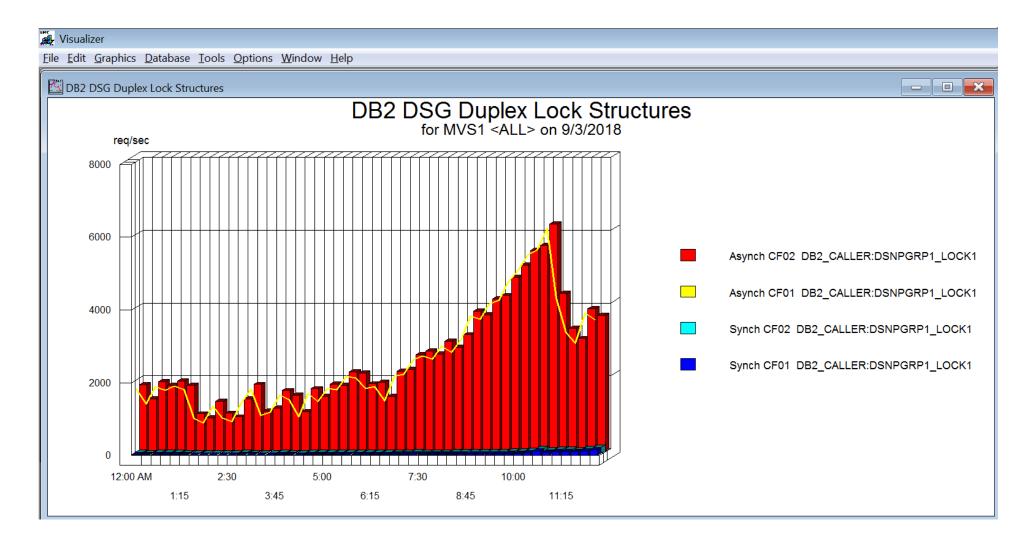
CF Spin Loop GCP MSUs When?



CF Management Critical

- IBM MLC Increased Software bills
- CPC upgrades -Accelerated
- SLAs Impacted due to application response issues
 - Batch Window Issues

When do I care about Spin Loop MSUs?

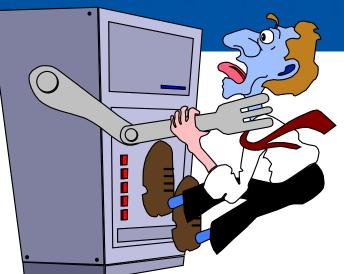


Impact of high SYNC Service times

- Synchronous causes GCP SPIN
 - GCP MSUs charged to requestor
- XES Issues Asynchronous not GCP spin, but;
 - CF % busy &
 - Requestor (not GCP) spin?
 - RNI impact = > MSUs
- Elongated response & elapsed time

XES – Converted 99.9% SYNC to ASYNC

CF KPIs impacting Spin Loop time


× 18 🗟 🛱 😧 🛱 🗢 🔿 🗟 🛶 🖧 🛣 🚔 🗃 🗟 🦓 🔽 🖌 🙀												
tructure Name	CF Name	Struc Type	Sta	Syn/ Sec	Sync SvcTm	Sync StDev	%Conv Async	FI Lk Sync%	#Of Reqs	Lock ContCnt	#DirEnt Reclaim	False LockCont
SNDLY LOCK1	CF13	Lock	SEC	14.3	21	142	0	1.38	6200	344		83 83
SNDLY LOCK1	CF11	Lock	PRI	14.4	17	141	0	1.37	6200	344		83
SNDJC_GBP0 SNDJY_GBP0	CF11	Cache		0.1	13	12	0		39			1000
SNDJY GBP0	CF11	Cache		0.3	11	10	0		128			
RS DATA	CF11	List		0.3	15	7	0		127			
SNDIY GBP0	CF11	Cache		0.5	12	6	0		208			
TGENERIC	CF11	List		17.9	8	5	0		7508			
SNDJY LOCK1	CF11	Lock		5.7	8	6 5 5 5 5	0	0.58	2425	65		14
RS MAIN	CF11	List		0.5	16	5	0		195			
SNDGG SCA	CF11	List		2.5	11	5	0		1064			
YSZWLM 62E72964	CF11	Cache		0.3	17	4	0		141			
SNDJY GBP32K	CF11	Cache		0.1	10	4	0		62			
SNDJY SCA	CF11	List		5.5	15	4	0		2310			
SNDIE SCA SNDJC_SCA	CF11	List		2.3	15	3	0		954			
SNDJC SCA	CF11	List		2.3	15	3 3	0		952			
SNDGR SCA	CF11	List		2.3	15	3	0		958			
SNDJE SCA	CF11	List		2.3	15	3	0		952			
SNDIE GBP0	CF11	Cache		0.1	10	3	0		32			
SNDIY GBP16K0	CF11	Cache		0.1	11	3	Ō		68			
SNDIY GBP32K	CF11	Cache		0.1	10	3 3	0		67			
SNDIY GBP8K0	CF11	Cache		0.1	10	3	Ō		67			
SNDLY SCA	CF11	List		49.1	15	3 3	0		20638			
SNDGR GBP0	CF11	Cache		0.3	10	3	õ		111			
RS LOGS	CF11	List		0.0	11	2	ŏ		15			
	CF11	List		14.9	10	2	ŏ		6240			
SNDIY_SCA YSARC_PLEX0_RCL	CF11	List		0.0	10	2	ŏ		3			1.1
SNDIE LOCK1	CF11	Lock		2.9	8	2	ŏ	0.08	1229	23		1
					8	2						
SNDJY GBP16K0										20		
		ouorio		w.1	0	-						
SNDIE_LOCK1 SNDGR_LOCK1 SNDJY_GBP16K0	CF11 CF11 CF11	Lock Lock Cache		2.9 3.0 0.1		3 2 2 2 2 2 2 2	0	0.08	1229 1287 63	23 20		

- Coupling Facility KPIs
 - High Sync Service times or Std Dev
 - False Contention
 - Synchronous to Asynchronous conversion %
 - Reported and
 - More importantly unreported

UK Region

What hardware changes reduce impact?

Coupling Facility Configuration

• Response time

- CF Type Internal or External
- CF Link types and speeds & % busy

CPU Dispatching

- Speed Ratio LPAR GCP to CF / ICF CP
- **CF Dispatching** # ICFs or CF CPs

CF – PU and Link speeds matter

z9 EC (2005) z10 EC (2008) z196 (2010) zEC12 (2012) **z13 (2015)**

Expected Data Transfer Rate (MB/sec)											
IC	CS5	IFB3	IFB 12x	IFB 1x	ICB-4						
	<70m	12x									
4000			600		1500						
7500			1000	400	1500						
8900		5000	1000	400	N/A						
9400		5000	1000	400	N/A						
8500	6000	5000	1000	400	N/A						
				4							

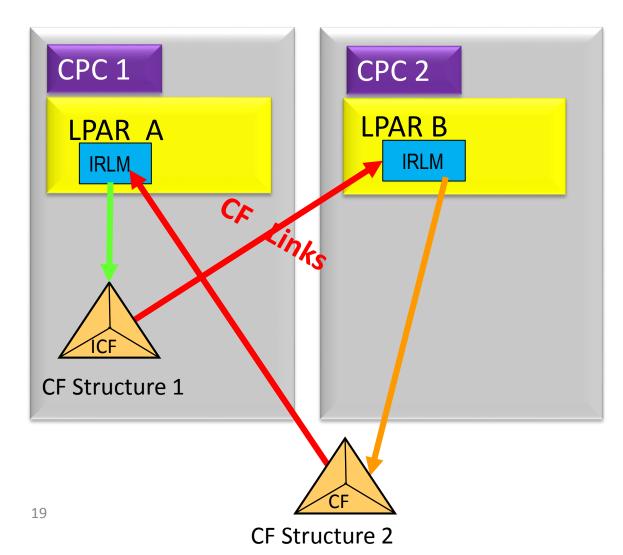
Always upgrade links w/ CPC

Very cheap compared to wasted MSUs

Then vs Now

- X-CPC > 4x faster
- Same CPC > 2x faster

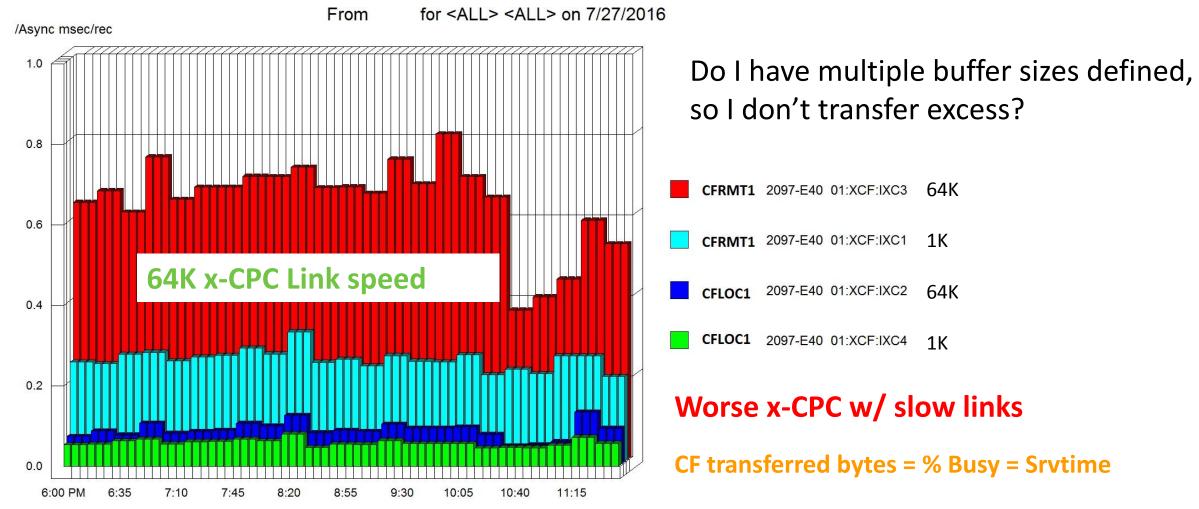
z14 CL5 replaces IFB1x But same slow speed


CF Links on DB2 Simplex SYNC Locks

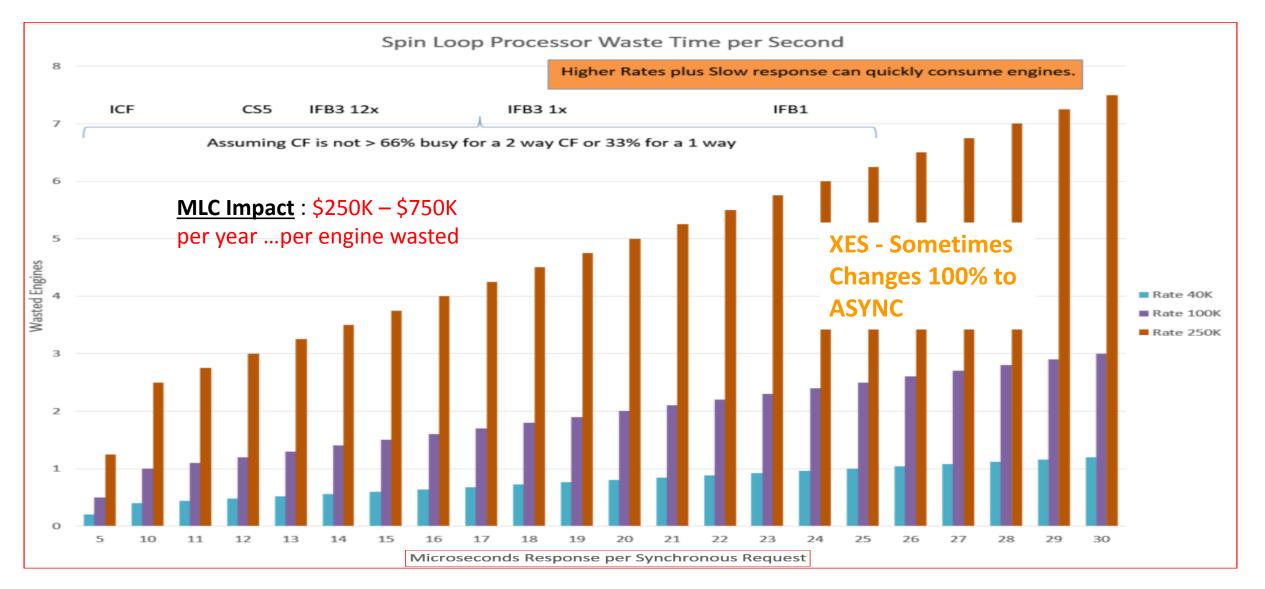
ICF01 Structure	LPAR Name	CPC Name - Contype	Avg Requests	SYNC Avg Service Time
Name	name	маше сопсуре	/sec	DELAICE IIIIE
DB2P_LOCK1	MVS1	CPC01-ICP	24.99	3.6
DB2P_LOCK1	MVS2	CPC02-Link	27.90	23.9

6.5x more Spin loop for remote requests in this good performance example

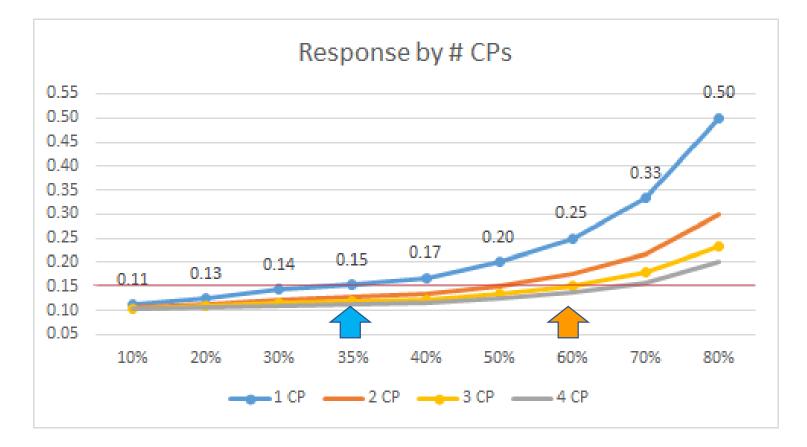
CF Configuration Example

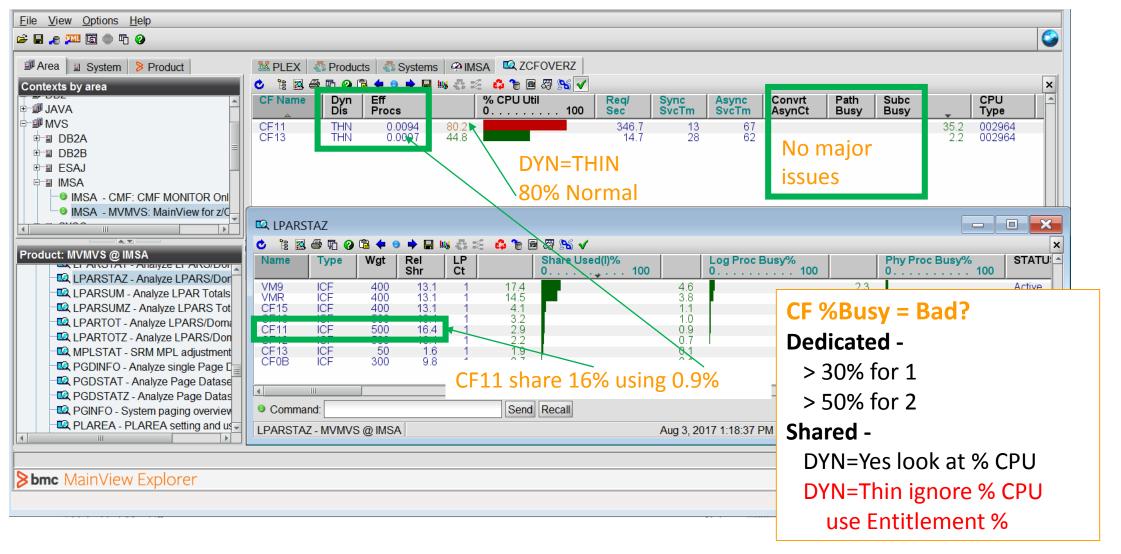


- CF Types ICF and External
- CF Speed Ratio
 - Model 500 CPC
 - Model 700 ICF & External
- Link Types
 - Internal for ICF
 - External Links IFB3-12x

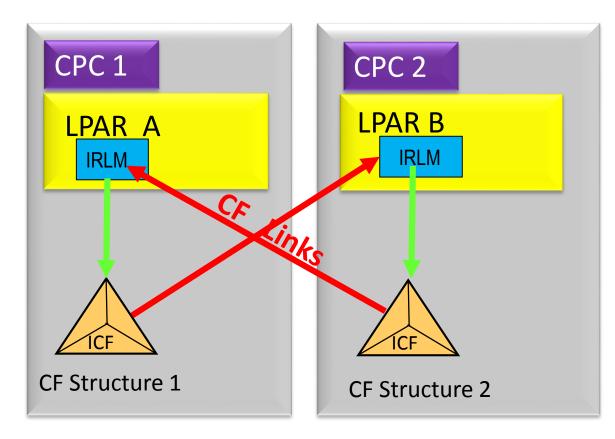

Link Speed & Amount of data matter

Async example – for extreme & known size

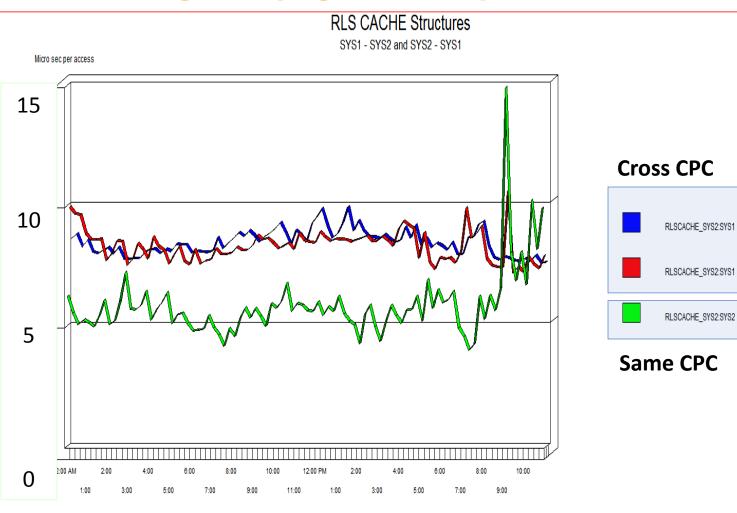

Link Types Impact SYNC Srv & Spin


Enough CPs - ensure SYNC w/o convert

- 1 Specialty engine @ 35%
- 2 Specialty CP @ 50-60%



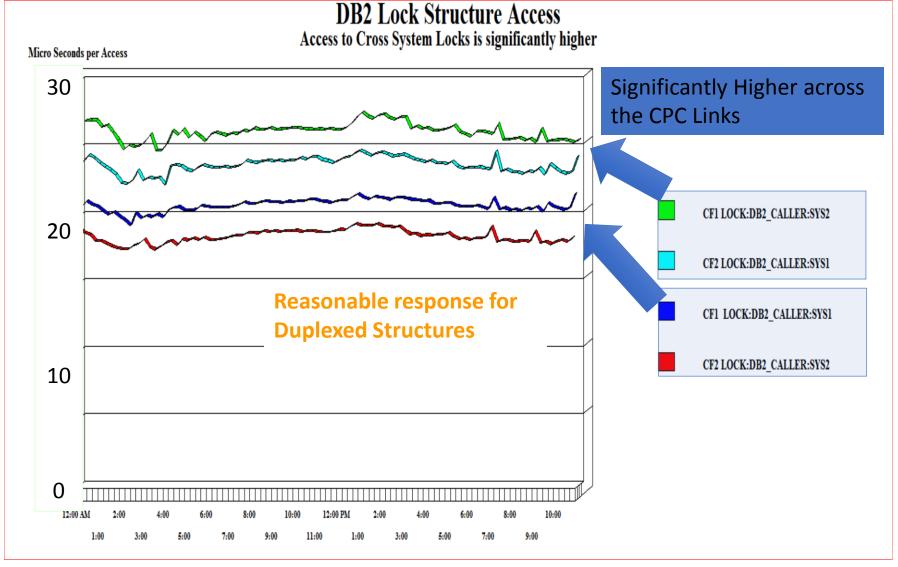
CF High CPU Utilization ?



CF Configuration Example

- CF Types Pair ICFs
- CF Speed Ratio
 - Model 500 CPC
 - Model 700 ICF
- Link Types
 - Internal for ICF
 - External Links CS5

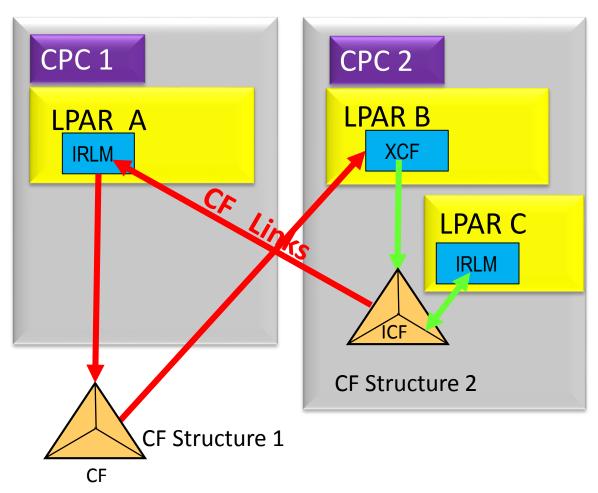
RLS Cache Structures – ICF vs CF Links



Internal -5 microsecExternal8 microsecw/ CS5 link

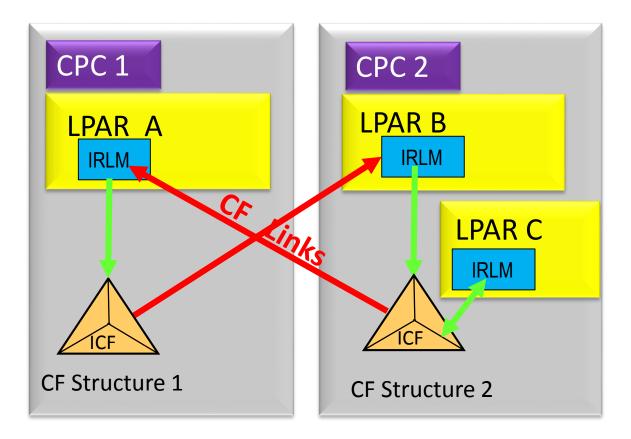
Distance and Link Speeds Matter

DB2 Lock Duplexing – ICF vs CF w/ Links


GUIDE SHARE EUROPE UK REGION

Local - 18 - 21 microsec External 23 - 27 microsec Note: much worse if LR links

New Async Duplexing Algorithms may help here.


Typical N-way

• Avoids need for CF structure Duplexing

CF Access Same vs Cross CPC

DUAL ICF vs External

- Advantage Fastest multiple CPC config
- **Disadvantage** N-way requires Structure Duplexing for recoverability speed
 - Long Distance more penalty
 - Asynchronous Duplexing of CF Lock Structure can eliminate penalty for local to Primary

What software changes reduce impact?

Software / Parameter Changes

Response time

- ASYNC Lock Duplexing DB2 V12
- CF Overflow DASD -
 - ie . VSAM RLS -> DASD = path busy
 - Increase CF structure size
- **DB2 GBPs** high volume SYNC
 - DB2 BP Simulator improve Local BP hits, avoid GBP

False Contention

• Increase CF structure size

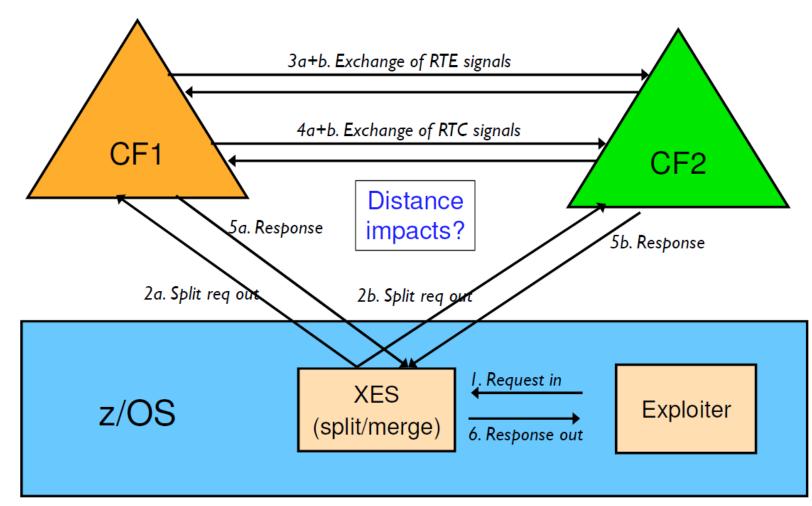
CPU Dispatching

- CF Dispatching Dynamic Dispatching
- LPAR Dispatching PR/SM Weights, Hiperdispatch
- Structure Placement
 - Local / Short distance to LPAR
 - XCF Paths one on each
 - DB2 ASYNC Secondary lighter

CF Sync – DB2 Duplexing -

Benefits

- SCA and lock structure "offers marginally faster recovery time"
- Global Buffer Pools "avoid hours of recovery time", recovering data from the Db2 logs can be very time consuming

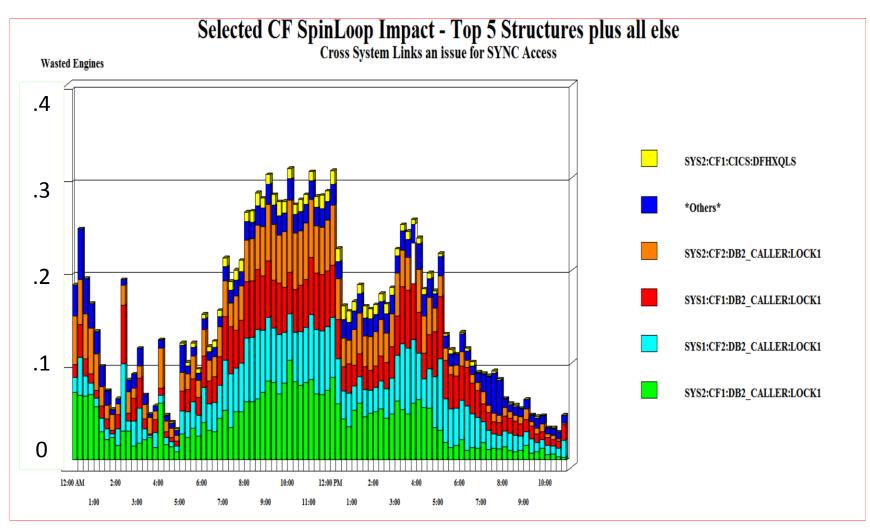

Disadvantages

- Significant Response Impact
- Significant CPU Impact
 - z/OS CPU = 3x to 4x
 - Direct GCP MSUs
 - CF CPU = 4x to 5x
 - Indirect GCP MSUs
 - CF Link = 6x to 8x

Indirect effects on workload difficult to predict

Current CF SYNC Duplexing

• Structures in-sync


• Ensured before response to caller

• Higher Response

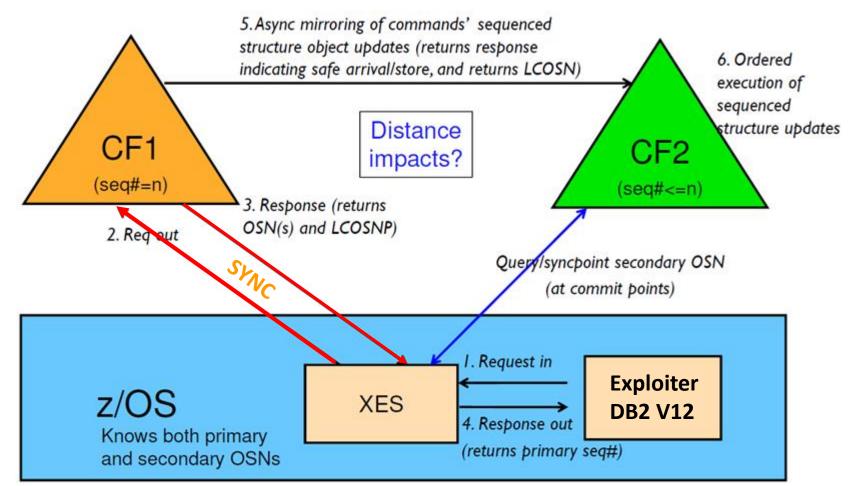
- 6 extra Signals
 - 4 CF -> CF
 - 2 to 2nd CF
- Distance / link type impacts
- Higher CPU
 - CF and GCP MSUs

RTE – ready to execute RTC – ready to complete

Spin Loop Source – Which Structures

Top LS Lock Structures

Local - 18 - 21 microsec External 23 -27 microsec


Duplexing Turned on New Async Duplexing should help here.

Wasted Engine Impact:

During the 4 Hour Peak?

CF Async Lock Duplexing – DB2 V12

Quicker Response

- Before CF2 in sync
- Recovery / commit waits for confirmation

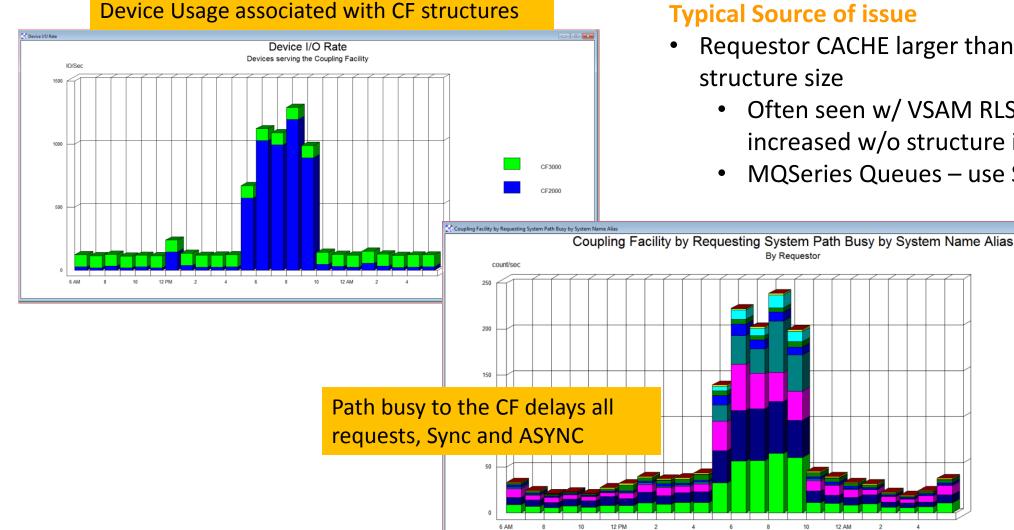
Lower Spin Loop

 SYNC service times similar non-duplexed

OSN = Operation Sequence Number

LCOSN = Last OSN completed by secondary

LCOSNP = LCOSN known to primary



ASYNC Duplexing – in RMF Report

STRUCTUR	E NAME = E # REQ	XAMPLE_	LOCK1	TYPE REQUES	= LOCK	STATUS =	ACTIVE				STS				
SYSTEM NAME	TOTAL AVG/SEC		# REQ		-SERV TI AVG		REASON	# REQ	% OF REQ		G TIME(MIC) STD_DEV		EXTERNAL REQU CONTENTIONS	EST	Simplex like SYNC service
SYS1	300м 83299	SYNC ASYNC CHNGD	294м 5649к 0	52.6 1.0 0.0	4.6 64.6 INCLUDED	4.5 21.8 IN ASYNC							REQ DEFERRED -CONT -FALSE CONT	2054к 1897к 267к	times
SYS2	259M 72049	SYNC ASYNC CHNGD	254M 5134K 0	45.5 0.9 0.0	4.6 64.8 INCLUDED	4.1 21.8 IN ASYNC	NO SCH	1	0.0	146.0	0.0	0.0	REQ TOTAL REQ DEFERRED -CONT -FALSE CONT	345M 2003K 1922K 233K	Duplexed / Secondary
TOTAL	559М 155.3К	SYNC ASYNC CHNGD	548M 11M 0	98.1 1.9 0.0	4.6 64.7	4.3 21.8	NO SCH	2	0.0	143.0	4.2	0.0	REQ TOTAL REQ DEFERRED -CONT -FALSE CONT	740M 4057K 3819K 500K	 CF structure kept in SYNC Via CF to CF Vs normal XES / zOS to CF
STRUCTU	IRE NAME =	EXAMPLE.	LOCK1		E = LOCK	STATUS =	ACTIVE	CONDAR							 No duplexing SYNC
SYSTEM NAME	# REQ TOTAL AVG/SEC		# REQ	- REQUE % OF ALL		IME(MIC)- STD_DEV	REASON	# REQ	- DELAY % OF REQ	ED REQUE AV /DEL	G TIME(MIC) STD_DEV	/ALL	EXTERNAL REQUE	EST	requests made
SYS1	2797к 777.1	SYNC ASYNC	2797K	50.4	17.0	3.5	NO SCH	0	0.0	0.0	0.0	0.0	REQ TOTAL	395M	 Only Seq # requests
l		CHNGD	ŏ	0.0	INCLUDE	D IN ASYNC							-CONT -FALSE CONT	1897К 267К	on commit
SYS2	2757K 766.0	SYNC ASYNC CHNGD	2757К 0 0	49.6 0.0 0.0	15.6 0.0 INCLUDE	3.6 0.0 D IN ASYNC	NO SCH	0	0.0	0.0	0.0	0.0	REQ TOTAL REQ DEFERRED -CONT -FALSE CONT	345M 2003K 1922K 233K	 Primary 294.0M Secondary 2.7M
TOTAL	5555K 1543	SYNC ASYNC CHNGD	5555K 0 0	$100 \\ 0.0 \\ 0.0$	16.3 0.0	3.6 0.0	NO SCH	0	0.0	0.0	0.0	0.0	REQ TOTAL REQ DEFERRED -CONT -FALSE CONT	740M 4057K 3819K 500K	

CF Overflow to DASD

Typical Source of issue

- **Requestor CACHE larger than CF**
 - Often seen w/ VSAM RLS, cache increased w/o structure increase
 - MQSeries Queues use SCM

GRP2

GRP8

GRP3

GRP6

GRP5

GRP7

GRP

Coupling Facility Structure Usage

• Balancing Structures across CFs

- Load balance structures to ensure both CFs similar CPU Utilization
- Synchronous Users Avoid all DB2 SSIDs locks on 1 CF
- Asynchronous Users 1 path / CF not all on 1

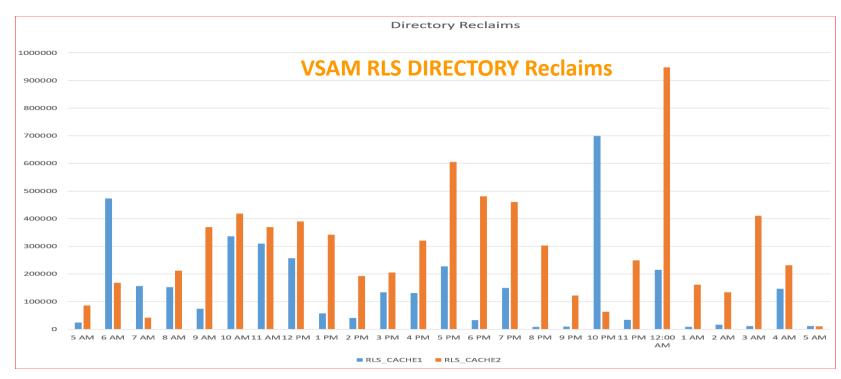
DB2 Global Buffer Pools

- Increase Local hit ratio to avoid requests to Global
 - Use DB2 BP Simulator to determine best local BP sizes

CF Data Sharing - Cross Invalidation

STRUCTUR	RE NAME = 1	DSNDB6 GI	BP2	TYPE	= CACHE	STATUS = A	CTIVE							
	# REQ			- REQUE	STS				- DELAY	ED REQUE	STS			
SYSTEM	TOTAL		#	% OF	-SERV T	IME(MIC)-	REASON	#	% OF	AV	G TIME (MIC)			
NAME	AVG/SEC		REQ	ALL	AVG	STD_DEV		REQ	REQ	/DEL	STD_DEV	/ALL		
SYSA	141K	SYNC	131K	92.7	19.6	10.2	NO SCH	0	0.0	0.0	0.0	0.0		
	156.4	ASYNC	10K	7.3	79.2	74.8	PR WT	0	0.0	0.0	0.0	0.0		
		CHNGD	0	0.0	INCLUDEI	D IN ASYNC	PR CMP	0	0.0	0.0	0.0	0.0		
		SUPPR	0	0.0			DUMP	0	0.0	0.0	0.0	0.0		
TOTAL	 141K	SYNC	 131к	92.7	19.6	10.2	NO SCH	0	0.0	0.0	0.0	0.0	DATA A	CCESS
	156.4	ASYNC	10K	7.3	79.2	74.8	PR WT	0	0.0	0.0	0.0	0.0	READS	316949
		CHNGD	0	0.0			PR CMP	0	0.0	0.0	0.0	0.0	WRITES	1330306
		SUPPR	0	0.0			DUMP	0	0.0	0.0	0.0	0.0	CASTOUTS	88294
													XI'S	258700

Cross Invalidated (XI's) # - are for directory, store-in and store-thru caches.


High Update Volume - often cause disruptions to the buffers as they have to be 'Invalidated' and re-written.

Avoid x-Sys interest - Run all Batch for a given DB run on same LPAR to avoid CF locks

Directory Reclaims – RLS / DB2 Cause XI

Directory Reclaims – forces CF buffer refresh even if unchanged buffer

DB2 DISPLAY GROUPBUFFERPOOL w/ GDETAIL issues

- DSNB788I message w/
- #Directory reclaims causing XI

DB2 - ALTER GROUPBUFFERPOOL

Has option to dynamically change ratio of data to directory entries

Buffer pool size Increase - increases # of directory entries for DB2 or RLS

Lock Contention

- True Contention % = # req delayed / total req
 Ø VSAM RLS or DBCTL approx 1%
 Ø Online (CICS/IMS) DB2 approx 2%
- False Contention % = #false / total

Ø VSAM RLS or DBCTL approx 0.1%
Ø Online (CICS/IMS) DB2 approx 1%
Ø Cause: hashing > lock entries (structure)

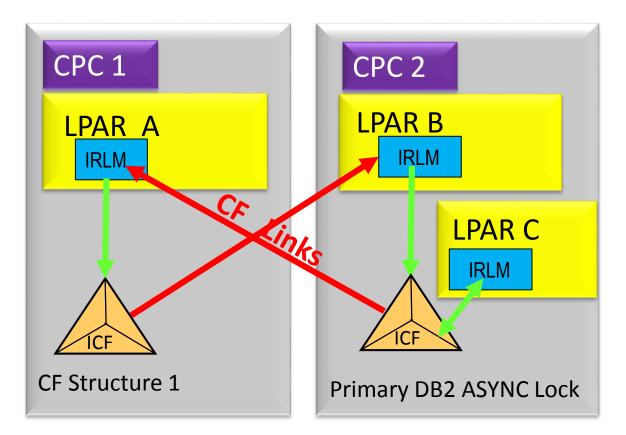
False Contention –

01AUG2017 20:32:	23	MAIN	VIEW W	INDO	J INTER	RFACE	(V6.2	.00)	
COMMAND ===>								SCR	DLL :
CURR WIN ===> $\overline{1}$	ALT	WIN :	===>						
>W1 =CFSTRUCZ=CFS	TRUC= (ALL:	=====	=*====	===) (01AUG20	917==2	0:31:	20====M'	MVS
Structure Name	CF Name	SSI	Struc	Sta	Sync	Sync	Syn/	%False	#Di
		Syst	Type		SvcTm	StDev	Sec	Lock	Reci
DSNDLY_LOCK1	CF13	SYSM	Lock	SEC	23	14	8.9		
DSNDLY_LOCK1	CF13	IMSA	Lock	SEC	18	20	35.6	22.15	
DSNDLY_LOCK1	CF13	ESAJ	Lock	SEC	36	392		19,70	

Duplexed - Even greater concern as causes even longer delays / extra requests

Shared CFs - Coupling Thin Interrupts

- DYNDISP keyword for the CF, the choices are;
- OFF (Production w/ Dedicated CF CPs)
- ON (Shared CP Original option fixed time slice)
- THIN (CP Sharing Newer <u>high performance option</u> interrupt driven)
- IBM Announcement for CFCC Level 19 (September 20, 2013)
- <u>http://www-03.ibm.com/systems/z/advantages/pso/whatsnew.html</u>
- IBM CF Performance report recommending and documenting performance of new option
- <u>http://www-</u> 03.ibm.com/support/techdocs/atsmastr.nsf/5cb5ed706d254a8186256c71006d2e0a/b6f20816aca23acc8625 7c580053a8cb/\$FILE/Coupling%20Thin%20Interrupts%2020131217.pdf



SE Workload Changes

Who is causing the spin loop? What can be done about it?

CF Access Same vs Cross CPC

Workload Scheduling

- Volume on CPC2 for local CF speeds
- Same DB access on same LPAR or same CPC LPARs

DB2 - Reduce Number of Locks in CF

- CF Locks only for Inter-DB2 R/W to TBLSPC
 - Batch Run multiple jobs that access same table / part from
 - 1 Plex member (no locks)
 - Fewer plex member fewer locks
 - Reduce Duration reduces x-system interest
 - ISOLATION Bind
 - RR Locks all pages *touched* until commit (HIGH Overhead)
 - RS Locks all pages *selected* until commit (less)
 - CS Ensures read only committed data (least overhead)
 - ACQUIRE (USE vs alloc)
 - Batch Release (Commit vs dealloc)

DB2 Group Buffer Pools

- Only if Inter-DB2 R/W Interest
 - Pages written to GBPs
 - Pages Registered in GBPs
- Cross Invalidates Make sure that GBPs large enough to hold directory entries for every page in local BPs (Directory/Data Ratio)
- Directory Reclaims cause issues

CICS VSAM RLS

- ** All CIs < 4K to CF even w/o interest **
- ** All Locks to CF even w/o interest **
- Look for False Contention on Lock Structure
- CICS Sharing Issues(RLS,DB2,DBCTL)
 - Datatables <4K CI SYNC CF I/O
 - CICS JRN <4K CI SYNC CF I/O

CICS VSAM RLS – Cache Buffers

- Monitor cache buffers % used.
- Ensure sizes in sync for RLS and CF
 - **Used > CF size** when RLS buffer defined > CF structure overflows to DASD.
- KPIs to Monitor:
 - % requests delayed by Path Busy
 - % of Structure storage used throughout the day.
 - SMF Records Type 74_4, Type 42_15 and 16, VSAM Type64

Summary

- Total Spin Loop time (Wasted Engines) should be used to drive changes in software and hardware.
- CF Response times are impacted by workloads and configurations.
- Critical components deserve respect and monitoring.
 - It is 12:00 PM, do you know what your 'CoFiSL' is?

Tuesday 6 th November								
Start	End	Stream	Room	Title	Speaker			
11:45	12:45	IMS	Wellington B	The No Cost Way to Manage the IMS Catalog	David Schipper			
15:00	16:00	IMS	Wellington B	Current Trends in IMS Analytics	David Schipper			
16:30	17:30	zCMPA	Woodcote	zIIP stealing GCP MSUs for Capacity Management	Donald Zeunert			

Wednesday 7 th November								
Start	End	Stream	Room	Title	Speaker			
09:30	10:30	Db2	Nurburgring	Know your onions when it comes to Db2 indexes	Randy Bright			
09:30	10:30	IMS	Wellington B	IMS Checkpoint Pacing	David Schipper			
10:45	11:45	zCMPA	Woodcote	How many GCP MSU is my CF stealing?	Don Zeunert			

Stop by the BMC booth for more information about sessions or other Q/A with speakers

Session feedback


- Please submit your feedback at http://conferences.gse.org.uk/2018/feedback/lll
- Paper feedback forms are also available from the Chair pers

• Session is LK

Contact: Donald_Zeunert@bmc.com

GE Backup Material

Reference

DB2 ASYNC Lock - Prereqs

- CPC z13 GA2+ running;
- **z/OS V2.2** with APARs: OA47796, OA49148, OA51945, OA52015
- **IRLM 2.3** with APAR PI68378
- **DB2**[®] **V12** with enabling APAR PI66689 for all members of DSG
 - Available since 2016-10-19
- Coupling facilities At least two peer connected
- **CFLEVEL=21** minimum service level 02.16
 - **CFCC** (for current information see the Driver 27 Customer Exception letter at CFCC firmware specified service level)

XCFAS (XES) = GCP MSUs

GUIDE SHARE EUROP UK REGIO

XES Functions

- CF Structure Sys Mgd Duplexing
- Async completion Mgmt
- Sync to Async conversion
- Global lock manager
 - IXLLOCK requests
- Asynchronous coupling facility (Simplex and Duplex) lock requests

XES Modules using CPU

- Global Locking
 - IXLR1GLU
 - IEAVE* in XCFAS
- CF Request management
 - IXLM2XRQ (Duplexing)
 - IXLC3SCN (Async Mgmt)
 - IXLCMFCT (Req Convert)
 - IXLYSCT (Sync Spin loop)

Additional info on Sysplex (CF, XCF) Tuning

- How z/OS (XES) Converts SYNC to ASYNC
 - IBM WSC Flash "Parallel Sysplex Performance" FLASH10011
 - Redbook System z Parallel Sysplex Best Practices <u>SG24-7817</u>
 - z/OS MVS Setting up a Sysplex (SA23-1399)
 - Chapter 6. Tuning a Sysplex XCF (first and large section)
 - Coupling Facility Configuration Options (David Raften)
 - VSAM RLS Best Practices (David LeGendre, Share 2012)
 - Some key CF Measurements (Peter Enrico)
 - <u>VSAM RLS Performance and Tuning IBM</u> (Teri Menendez)