
Moving Swiftly into Swift for mainframes…

Frank van der Wal
Digital Transformation
Technical Lead IBM Z BeNeLux
thewalll@nl.ibm.com

Why do we need modern
languages on IBM Z?

2

developers are using Java, JavaScript, and
Swift, worldwide.

3

14M
More than Skills: Millions of Available Developers1

Why do we need modern languages on IBM Z?

Remember: Your
existing code is a
valuable asset!

Rewrite Reuse

Lower risk

Large Investment in proven code

Contains undocumented business rules

Easier to change

More “Modern”

4

?

Get the best of the two strategies.

5

Leverage best fit language for
digital transformation

Why do we need modern languages on IBM Z?

WAS Db2

MQ COBOLCICS

IMS

2

6

Put your back-end closer to your data

Why do we need modern languages on IBM Z?

WAS Db2

MQ COBOLCICS

IMS

3

Swift Ecosystem

WWDC 2014
Apple releases a new

programming language
called “Swift”

WWDC 2015
Apple announces to
open source Swift

“Swift is growing
faster than anything

else we track”

June 2014
June 2015

July
2015

Nov. 2015

Apple releases Swift
as Open Source.

Dec. 2015

Jan.
2016

Programming Language
Rankings Swift “meteoric rise”
continues. “Swift moves up one
spot from #18 to #17 Y/Y…and is
within hailing distance of our Tier
1 languages”.

Feb 2016

IBM InterConnect 2016

IBM to bring Swift to the cloud
to radically simplify end-to-

end development of apps

Swift #2 “Most
Loved”

Mar. 2016

Tokyo

NYC

ü Industry backing
ü Developers acceptance
ü Tools & packages
ü Conferences & meetups

8
http://www.tiobe.com/tiobe-index/

Swift is in the top 10 of most popular languages…

Why Swift?

Safe

Modern

Performance

Why Swift? Performance.

4 4.3
15.8

134.2

0
20
40
60
80

100
120
140
160

Swift
Jav

a

Jav
aScri

pt
Rub

y

Du
ra

tio
n

(s
)

(lo
w

er
 is

 b
et

te
r)

Performance: Fast

15

32.2
25.3

54.6

0

10

20

30

40

50

60

Swift
Jav

a

Jav
aScri

pt
Rub

y

M
em

or
y

Us
ag

e
(M

B)
(lo

w
er

 is
 b

et
te

r)

Performance: Low Memory

Source: benchmarksgame.alioth.debian.org/u64q/performance.php?test=spectralnorm

It’s a compiled language after all

http://benchmarksgame.alioth.debian.org/u64q/performance.php?test=spectralnorm

• Compiled to native code

• Leverages LLVM Back-end and Optimizer

• Slightly better than Java in speed/memory

• Concurrency built-in

• Automatic Code Optimizer

• -O (inlining, loop optimizations, etc)

• -whole-module-optimization

• Can directly call C Libraries via C interface

11

Invocation: swiftc –O main.swift –o a.out

Why Swift? Performance

Based on the well-established LLVM framework

• Actively developed compiler and toolchain, IBM/Google/Apple
contributing to it

• Geared to work with LLDB

• LLDB is a next generation, high-performance debugger

• Has a REPL (interactive compiler)

12

zArch
Machine
Code

Why Swift? Performance

• Type safe

• Helps developers refactor,
extend, iterate on solutions.

• Error detection at compile time

• Automatic initialization

• Variables are automatically
initialized

• Memory is automatically
allocated and managed.

Why Swift? Safe

• Type inference
• Catch potential run-time errors

at compile-time

• Memory management
• Uses ARC (automatic reference counting)
• Pointers are allowed but discouraged
• Optionals are intended as a replacement

• Variables and constants always initialized
and array bounds are always checked.

Why Swift? Safe

let pi = 3.14159
// constant pi is inferred to be of type Double

var msg = “Swift on z/OS”
// variable msg is inferred to be of type String

var name:String?
// name is of type Optional String
name = “z/OS”
name = nil

Why Swift? Modern
• Easy to learn
• Concepts are similar in other

popular languages (C, C++, Java)

• Concise and straightforward to read
• Little verbiage
• Similar syntax to Java and C++

Why Swift? Modern
Language Concepts

Unicode language (variable
names and values)

Classes
Initializers, Deinitializers,
Inheritance, Methods,
Parameters , Setters/Getters

class Example {
var a = 0
var b: String

init(a: Int) { // Constructor
self.a = a
b = "name" // An error if a declared property isn't initialized

}
}

Why Swift? Modern
Language Concepts

Tuples

Closure Expressions

Protocols (aka interfaces)

Operator Overloading

Generics

let http404Error = (404, “Not Found”)

reversedNames = names.sorted(by: { (s1: String, s2: String) -> Bool in
return s1 > s2 })

protocol SupportsToString { func toString() -> String }

static func +(left: Vector, right: Vector) -> Vector
{ return [left.x + right.x, left.y + right.y, left.z + right.z] }

func addTwoValues<T>(_ a: inout T, _ b: inout T) { return a+b }

Why Swift? Modern

For..in loops
let numberOfLegs = ["spider": 8, "ant": 6, "cat": 4]

for (animalName, legCount) in numberOfLegs {
print("\(animalName)s have \(legCount) legs")

}

Containers
Arrays, Sets, Dictionaries, etcFile IO

JSON Codable
serialization/
deserialization

NetworkingLogging

IBM Toolkit for Swift – Linux on z Systems

19

• Core tools to develop in Swift:

• Compiler
• Swift Runtime
• Libraries
• Debugger (lldb)
• Web framework (Kitura)
• Package Manager

https://www.ibm.com/marketplace/swift-compiler
Community Edition

(free of charge)
Enterprise Edition
(License + S&S)

https://www.ibm.com/marketplace/swift-compiler

IBM Toolkit for
Swift on z/OS
Community Edition

https://developer.ibm.com/mainframe/
products/ibm-toolkit-swift-z-os/ 20

Key features in Swift 4.1

• Swift compiler

• Standard Library

• Core Libraries

• Package Manager

• Sample Swift application based on Kitura

• Interoperability with C, PL/I, assembly,
VSAM, and DB2.

• Free of charge

21IBM Z / DOC ID / July 17, 2017 / © 2017 IBM Corporation

Swift supports interlanguage calls to PL/I

Requirements:

1. PL/I procedures compiled as 64-bit (-qlp=64)

2. Swift Module Map to expose PL/I library

3. C bridging header to expose PL/I routines

// Swift Program
import PLITest // Import module
writepair() // C PL/I routine

Sample Scenario:
Call PL/I directly from Swift

// C Bridging header to expose PL/I functions
int writepair(void);

// Module Map
module PLITest [system]
{

header ”interface.h" export *
}

// PL/I procedure
write: procedure ext("writepair")

Put List('Hello world');
End write;

The same scenario applies for C, C++, and PL/I

Demo…

22

23

High level architecture

23

CICSz/OS ConnectSwift
z/OS

z/OS

Swift
linuxONE

Linux on Z

VSAM
COUCH

Created REST API’s into an existing
CICS trx

Kitura to route incoming requests
Update database using existing PL/1*

Kitura to route incoming requests
Receives response and …
…fetches pictures from COUCH DB
Render HTML using Kitura Stencil

24

Advantages of having a full stack development team

24

CICSzCEESwift
z/OS

Swift
linuxONE

VSAM
COUCH

F u l l s t a c k d e v e l o p m e n t

CICS
z/OS Connect

Swift

You can impact the future

25

• We are looking for innovators and early adopters

• Validate user scenarios and get early
access to the latest drivers.

• If interested, please contact:
shereen@ca.ibm.com
thewall@nl.ibm.com

mailto:shereen@ca.ibm.com

Resources

26

§ Swift

– IBM Marketplace (Swift on Linux on z): https://www.ibm.com/us-en/marketplace/swift-compiler

– Swift @ IBM: https://developer.ibm.com/swift/

– Extending Swift Value(s) to the Server (Free e-book): https://www-01.ibm.com/marketing/iwm/dre/signup?source=mrs-

form-10468&S_PKG=ov55459

– Free online course about server-side Swift: http://blog.udacity.com/2017/06/server-side-swift-with-ibm.html

IBM Z / DOC ID / July 17, 2017 / © 2017 IBM Corporation

https://www.ibm.com/us-en/marketplace/swift-compiler
https://developer.ibm.com/swift/
https://www-01.ibm.com/marketing/iwm/dre/signup?source=mrs-form-10468&S_PKG=ov55459
http://blog.udacity.com/2017/06/server-side-swift-with-ibm.html

27Replace the footer with text from the PPT-Updater. Instructions are included in that file.

