
How to Make the Most out of BCPii

Steve Warren

IBM

email: swarren@us.ibm.com

November 2018

Session BB

https://twitter.com/gseukc
https://www.linkedin.com/groups/1741877
https://www.facebook.com/pages/Guide-Share-Europe-UK-Region/174907039241415
mailto:swarren@us.ibm.com

Agenda

• Quick BCPii Overview
• What is it and what can I do with it?
• Installation basics

• What can I do with BCPii?
• Off the shelf solution examples

• IBM offerings
• Non-IBM offerings

• Writing my own BCPii app
• Typical BCPii usage when writing your own application
• Programming basics

• Recent z/OS BCPii Enhancements

• Reference material

Quick BCPii Overview

3

Overview - What is BCPii?

SE

SESE

HMC

CPC1

CPC2

CPC3

Authorized z/OS application

•Monitor status or capacity changes

•Obtain configuration data related to
CPC or image

•Re-ipl an image

•Change temp. capacity

•Query and update LPAR settings

•Set activation profiles

Process

Control

(HMC)

Network

Overview - What is BCPii?

• Base Control Program internal interface
• Allows authorized z/OS applications to have HMC-like control over systems in the process

control (HMC) network

• A set of authorized APIs provided

• Does not use any external network
• Communicates directly with the SE rather than going over an IP network

• A z/OS address space that manages authorized interaction with the
interconnected hardware

6

• System automatically tries to start BCPii address space at IPL time.

• You don't need to add anything to COMMNDxx to tell z/OS that it needs to start BCPii or run any
automation.

• Successful start requires that certain steps have been carried out:

• Setup on the HMC/SE

• Enable BCPii on the CPC

• Setup SE BCPii security controls

• Setup in z/OS

• Make sure BCPii has access to necessary OS programs

• Add BCPii programs to an APF-authorized library

• Setup with z/OS Security authorization

• Which users can use BCPii

• Which hardware resources they can touch

• What level of access they have to those resources

Installation Basics

7

Select SE Management

Then select "Customize
API Settings"

Installation Basics – Enable BCPii on the CPC
Logon onto the HMC as ACSADMIN (a special privileged ID)

8

Then click on Add in
Community Names
section

Select "Enable SNMP
APIs"

Installation Basics – Enable BCPii on the CPC
(continued…)

9

Fill in exactly as shown
here. Remember to
select Read/Write

Then press OK
Name must be 1-16
chars, alphanumeric, no
lower case.

Value you specify here
must match name used
in SAF CPC profile for this
CPC

The Name value can be the same
on every CPC, or different on every
CPC. It is NOT necessary for each
CPC to have a different Name
value if you don't wish to.

Installation Basics – Enable BCPii on the CPC
(continued…)

10

Finally, click OK to apply
and save the changes

BCPii is now enabled for this CPC!

Installation Basics – Enable BCPii on the CPC
(continued…)

11

Setup SE BCPii security controls - z14 BCPii CPC Security Controls

• Select Systems
Management ->
Select the CPC
that is required ->
System Details
task -> Security
tab

• To grant authority
to all partitions on
all CPCs to issue
BCPii calls against
this CPC, ensure
that the following
options are
selected: a. Enable
the system to
receive
commands from
partitions b. All
partitions

12

Setup SE BCPii security controls - z14 BCPii CPC
Security Controls – adding partitions

• 1. Can select from
the set of known
partitions

• Known partitions
are from the point
of view of the
system/partition
being configured

• “Local” partitions
based on the
currently defined
image profiles.

• “Remote”
partitions learned
from managing
HMCs.

• 2. Can enter a
partition manually
for cases like pre-
planning.

13

Setup SE BCPii security controls - z14 BCPii CPC
Security Controls – adding partitions

• Can also
allow only
selected
partitions.

• Check the
check box
only to
remove a
CPC/Image
from the list.

14

Setup SE BCPii security controls - z14 BCPii LPAR Security Controls

• CPC Operational
Customization ->
Change LPAR
Security.

• Used to
view/alter LPAR
BCPii security
controls.

• Available on
HMC and SE.
HMC only
supports z14 and
higher

• Click “BCPii
Permissions” link
to view/alter
BCPii security
control setting.

15

Setup SE BCPii security controls - Image Profile Security Controls

• Allows BCPii
to be enabled
on this image
and to be able
to potentially
access other
entities.

• Allows BCPii
requests to
target this
partition from
all or a select
set of local
and remote
partitions.

16

Setup SE BCPii security control – Multiple Image Profile
Security Controls

• Can change
multiple
image
activation
profiles at
the same
time to easily
configure the
same BCPii
permission
settings.

17

Setup on z/OS

• BCPii address space requirements

• hlq.SCEERUN and hlq.SCEERUN2 data sets must be in LNKLST (in a

special list of programs that are accessible to z/OS applications)

• Program authority for BCPii applications

• Programs that will be calling BCPii services must reside in an APF-
authorized library.

18

• General BCPii authority for applications

• The profile HWI.APPLNAME.HWISERV in the FACILITY resource class
controls which applications can use BCPii services.

• Anyone wishing to use BCPii must at least have READ access to this
profile.

• The FACILITY class must be RACLISTed

Setting up BCPii Security Definitions – General
Authority

19

A BCPii application needs to have authority to the particular resource
(CPC, Image, Capacity Record, Activation Profile) that it is trying to
access (This is IN ADDITION to having access to the HWISERV FACILITY
profile).

Profile names are:

• CPC: HWI.TARGET.netid.nau

• Image: HWI.TARGET.netid.nau.imagename

• Capacity Record: HWI.CAPREC.netid.nau.caprec

• Activation Profile:HWI.TARGET.netid.nau

Note: netid.nau is the 3-17 character SNA name for CPC (defined when you first
define the SE to the HMC)

Setting up BCPii Security Definitions – Specific
Authority to Hardware Resources

20

Setting up BCPii Security Definitions – Security
Levels

• Choose SAF authority to a specific resource listed above to
allow BCPii service access:
• HWILIST, HWICONN, HWIDISC, HWIEVENT, HWIQUERY

• At least READ access

• HWISET
• At least UPDATE access

• HWICMD
• At least CONTROL access

21

• When defining the CPC profiles, APPLDATA must match the
community name you specified on the SE:

• RDEFINE FACILITY HWI.TARGET.USIBMSC.SCZP301

UACC(NONE) APPLDATA(‘BCPII’)

• This will need to be repeated for every CPC that BCPii will be
communicating with

Setting up BCPii Security Definitions – Associate
SE Community Name with CPC security definition

• System automatically tries to start BCPII address space at every
IPL:
• Address space name is HWIBCPII.

• Address space shows up in SDSF DA, but not in D A,L output.

• Address space can be stopped using P HWIBCPII command:
• Once the address space is stopped, no BCPII calls will be processed.

• ENF signal is broadcast to let any interested parties know that the
interface is stopping.

• If P command doesn't work, you can use a CANCEL HWIBCPII

• Address space can be started again using S HWISTART
(HWISTART is delivered in SYS1.PROCLIB)

The BCPii address space

• There is currently no console command to check the status of BCPii.

• If Pre-reqs are not in place at IPL time, address space will start and then stop.

• So, if address space is active, that is at least a positive sign.

• Check for message HWI001I BCPII IS ACTIVE among IPL messages

• Doesn't guarantee that every CPC has been set up to support BCPII

• Currently the only way to check is from a program that uses the BCPII API

• If program doesn’t get ‘F00’X return code (HWI_NOT_AVAILABLE), BCPii is active on the system.

How to check the status of BCPii

Having completed the setup work on the local CPC and in RACF, we now start
BCPii address space:

Start BCPii

What Can I do with BCPii?
Off the shelf solutions

What can I do with BCPii?

•Sampling of IBM products/features using z/OS BCPii:

▪Parallel Sysplex (System Status Detect Partitioning Protocol)

▪Capacity Provisioning Manager (CPM)

▪Hardware Configuration Definition (HCD)

▪Multi-Site Workload Lifeline

• If a member of a sysplex dies, it is probably holding resources that will be
required by other members of the sysplex.

• The longer this situation lasts, the more units of work will be impacted.

• The goal is to partition a dead system as quickly out of the sysplex as
possible

Why BCPii and SSDPP?

Prior to z/OS 1.11, the only mechanism that z/OS had to determine the status of
another member of the sysplex was to check that system's heartbeat in the
sysplex CDS.

• If a system is going through recovery, it might not be able to update its
heartbeat in the CDS. This means that you need to give a system some
"reasonable" amount of time to recover before the system partitions the
sick system out of the sysplex.
• An IPL might take 30 minutes. Would you rather give a little more time for recovery to

work, or kill it now and face an IPL? Your answer is probably "it depends on whether
the system is dead or is in the middle of recovery".

• Prior to z/OS 1.11, z/OS had no way to know whether another system was dead or
trying to recover.

• SSDPP (and BCPii) changed that.

Why BCPii and SSDPP?

• Before:

• Wait until the Failure Detection Interval (FDI) occurs before
partitioning the system out of the plex.

• A system that wait states takes roughly just under 3 minutes before
Sysplex Failure Manager (SFM) detects the problem

• “Sympathy sickness” abounds on all systems in the sysplex for all of
this time

Before and after SSD (and BCPii)

• New way:

• Use BCPii whenever a heartbeat is missed to detect the status of the other
system

• If system is dead, SysReset that image and partition it out of the sysplex
immediately

• Systems not dead experience on average more than 2.5 minutes of relief
from sympathy sickness

• “Reply Down” message becomes mostly obsolete, reducing human error to
this WTOR prompt

• AutoIPL can be used in conjunction with this function to bring back the dead
system

Before and after SSD (and BCPii)

• Summary:

• Prereqs:
• Correctly formatted Sysplex CDS

• Implement BCPii

• System Status Detection Partitioning Protocol is a significant step forward. This is
the most fundamental change to handling of system failures since the introduction
of SFM.

• Easy to implement.

• You can start to enable it immediately - no need to wait for the whole sysplex to be
upgraded.

System Status Detection Partitioning Protocol

• Today’s challenges to manage capacity
▪Unexpected events and workload spikes can afford higher processing
capacity
▪Manual capacity management can be time-consuming and error prone
▪Capacity provisioning decisions must be made without sound data

Capacity Provisioning Manager

Manual capacity upgrades – How it could look like

1. Workload increases 0 min

2. Operator realizes bottleneck 5-10 min

3. Operator informs system programmers and manager 2 min

4. Discussion 10 min

5. Logon to HMC, change capacity 5 min

… meanwhile, so much workload may have queued up that a small
amount of additional capacity would be insufficient to decrease the
queued workload

 Much more capacity has to be added

CPM can react faster and reduce cost

▪ z/OS WLM manages workloads to goals and
business importance

▪ WLM indicators available through monitoring
component

– E.g. z/OS Resource Measurement Facility (RMF)

– One RMF gatherer per z/OS system

– RMF Distributed Data Server (DDS) per Sysplex

▪ Capacity Provisioning Manager (CPM) retrieves
critical metrics through CIM

▪ CPM communicates to support elements or HMC,
via BCPii.

HMCSE

Plex1.zOS1

LPAR Hypervisor

Linux

Capacity

Provisioning

Manager

(CPM)

Prov.

Policy

RMF

CIM

server

Plex2.zOS2

Capacity

Provisioning

User Interface

RMF

DDS

BCPii

WLM WLMRMF

CIM

server

RMF

DDS

z/OSMF

▪ Capacity Provisioning User Interface is front end to administer
Capacity Provisioning policies

▪ z/OSMF Capacity Provisioning task

Capacity Provisioning – Infrastructure in a Nutshell

▪ CPM server uses three types of input:

–Domain configuration defines the topology and connections, such as the
CPCs and z/OS systems that are to be managed by the server

–Policy contains the information as to

•which work is provisioning eligible,
under which conditions and during which timeframes

•how much capacity may be activated when the work suffers due to
insufficient processing capacity

–PARM data set contains setup instructions such as UNIX environment
variables, and various processing options that may be set by an installation.

CPM Policies and Processing Parameters

• When that work does not achieve its goal due to insufficient capacity and additional
capacity would help, and

• The performance index of service class periods exceeds the activation threshold for a
specified duration

–Work is considered to require help and additional capacity is temporarily added using
purchased capacity records

• Sophisticated controls can scope on processor limits, defined capacity limits, and group
capacity limits

• Audit trails

CPM Behavior

• HCD contains a Microprocessor Cluster List, to display all logical

partitions belong to the current CPC.
–Useful information can be displayed such as:

•Sysplex name the partition belongs

•Name of the system running in the displayed partition

•Operating system type

•Operating system release level

HCD and BCPii

• Enables intelligent load balancing of TCP/IP workloads across two sites

at unlimited distances to provide nearly continuous availability.

• Enables movement of workloads from one site to another by providing
graceful rerouting.

• Lifeline uses BCPii to detect site failures. Lifeline communicates with all
CPCs on the HMC network across both sites, to determine whether the

LPARs that make up the z/OS sysplexes within each site are available. If
all LPARs within a site are no longer active, then Lifeline can trigger site
failure processing.

• A key component of the GDPS/Active-Active solution.

IBM Multi-site Workload Lifeline

What can I do with BCPii?

•Non-IBM offerings example:

•CA Technologies

•CA OPS/MVS® Hardware Services utilizes BCPii to automate
hardware functions such as:

•listening for hardware events based on coding simple rules.

• Event data is made available as simple rule variables.

•issuing directives to the hardware easily

• GETATTR, SETATTR and SENDCMD to specific CPC, LPAR or
Activation profile entities

• Example: can set CPU weights, CBU, COD, etc..

What can I do with BCPii?

•Non-IBM offerings example:

•BMC Software

•Mainview AutoOPERATOR® REXX execs utilize BCPii to List, Query, Set
and issue commands to targeted hardware entities

•“The IMFEXEC HMC capability may be interwoven with the existing
automation to improve system throughput/reliability or reduce financial
costs (eg. MSU based IBM charges).”

•Examples of use: Querying and altering the GroupProfileCapacity,
Changing the number of processors in an LPAR, etc..

•Non-IBM offerings examples:

• zPrice Manager®

•Every 5 minutes zPrice Manager will compare the actual MSU usage,
the 4hr MSU usage, and other parameters against rules, act accordingly
and offload the information for reporting purposes. zPrice Manager
accesses HMC through the BCPii interface.

•Changes weighting, defined capacity and capacity groups based on
user specified rules

• zDynaCap® is another product from same company that also uses BCPii.

What can I do with BCPii?

What can I do with BCPii?

•Non-IBM offerings example:

• zCost Management AutoSoftCapping®

•Optimizes the performance of your system while controlling your
Workload License Charges.

•Dynamically load balances between the LPARS

•Controlled total defined capacity

•Web reporting

•Forces better compliance with SLAs at the lowest cost

What Can I do with BCPii?
Writing my own BCPii app

Typical BCPii usage when writing your own
application

• Application to change LPAR weights at strategic times to push thru
critical work

• Application to change LPAR weights to meet SLAs or to reduce
costs

• Application to synchronize primary sysplex with disaster recovery
site

• Remote data center operations

• React to hardware messages on the CPC

• Remote student partition administration

Programming Basics

•BCPii services available
•HWILIST (BCPii List)

•HWICONN (BCPii Connect)

•HWIDISC (BCPii Disconnect)

•HWIQUERY (BCPii Query)

•HWISET (BCPii Set)

•HWICMD (BCPii Command)

•HWIEVENT (BCPii Event (for non-z/OS Unix callers))

•HwiBeginEventDelivery, HwiEndEventDelivery, HwiManageEvents,
HwiGetEvent (for z/OS Unix callers)

Programming Basics
• HWILIST - Retrieve HMC and BCPii configuration-related information

• List CPCS
• List the CPCs interconnected with the local CPC

• List Images
• List the images (LPARs) contained on an individual CPC or in user-defined imagegrp

• List Capacity Records
• List the capacity records contained on an individual CPC

• List Events
• List the events already registered on a particular BCPii connection

• List Local CPC, List Local Image
• Obtain the name of the CPC name or image (LPAR) name that the BCPii application is currently running on.

• List Reset Activation Profiles, List Image A.P. and List Load A.P.
• List the currently defined activation profiles contained on a individual CPC

• List User-defined Image Group Names
• List the currently defined image group names contained on an individual CPC.

• HWICONN - Establish a logical connection between the application and a:

• Central processor complex (CPC),

• CPC image (LPAR) on a particular CPC,

• Capacity record on particular CPC

• Activation Profiles

• User-defined image groups

• Input:

• Connection type (above 3 types)

• Connection name (CPC example: net1.cpc01)

• Previous ConnectToken (if type is image, caprec, activation profile, or user-
defined image group)

• Output:

• ConnectToken used on subsequent BCPii calls.

Programming Basics

•HWIDISC – Release a logical connection no longer needed
• Input:

•ConnectToken
•How are connections implicitly disconnected?

•C, Assembler, System REXX
• When a job completes associated with the BCPii application (JES or z/OS UNIX

initiator), when the address space has terminated, or when the address space
that invoked the System REXX exec has terminated.

•TSO/E REXX, ISV-provided REXX environment
• When the REXX exec ends

Programming Basics

• HWIQUERY - Retrieve information about objects managed by the hardware management
console (HMC)/support element related to:

• Central processor complexes (CPCs),

• CPC images (LPARs) on a particular CPC,

• Capacity records on particular CPC

• Activation Profiles (Reset, Image, or Load)

• User-defined Image group properties

• Input:

• ConnectToken (associated with one of the above)

• List of attributes requested, data areas to store the return values)

• Output:

• Data returned

Programming Basics

•Examples of information you can query

•CPC information
• General information

• Name, serial, machine type, id, networking info, level of SE, engineer code & microcode levels installed

• Status information
• Operating status and other status values

• Capacity information
• Various CBU info, Capacity on Demand info, Processor configuration, including IFA, IFL, ICF, IIP

• Power savings information
• Is power savings available?, current power savings mode, supported power saving modes available

• Image information
• General information

• Name, OS info

• Capacity information
• Defined capacity, Processor weights

Programming Basics

•Examples of information you can query (continued):

•Capacity record information

• General information

• Name, Activation and expiration dates, activation days

• Status information

• Record status

• Capacity information

• The entire Capacity record

•Activation profile information

• Most activation profiles values

Programming Basics

• HWISET– Change or set data for objects managed by the hardware
management console (HMC)/support element related to:

•Central processor complexes (CPCs),

•CPC images (LPARs) on a particular CPC,

•Activation Profiles
• Input:

•ConnectToken (associated with one of the above)

•Attribute (object) to modify, the modified value, the value length
• Output

•Return code

Programming Basics

•Examples of information you can set
•CPC information

• Acceptable status values

• Next Reset activation profile name

• Processor Running Time

• Image information

• Various processor weights

• Defined Capacity

•Activation Profile Information

• Most activation profile values

Programming Basics

Programming Basics

•HWICMD – Direct hardware/software commands to CPCs, images and
user-defined image groups

• Input:

•ConnectToken (associated with a CPC, image, or image group)

•Command parameter structure (based on the type of command issued)

•Output

• Synchronous return code

•Asynchronous command completion event delivered to previously-
registered event user when command finishes.
• For image commands targeted to an image group, one image event is returned for each image

in the user-defined image group.

•Examples of commands that can be issued:
• CPC commands

• Activate, Deactivate an entire CPC

• CBU request
• Activate or Undo

• On/Off Capacity on Demand request
• Activate or Undo

• Switch Power Savings Mode

• Sysplex Timer (STP) commands

• Image commands
• SysReset, SysReset with IPL Token

• Load

• Start, Stop all CPs

• Add or remove temporary capacity

• Issue operating system command

Programming Basics

•HWIEVENT (non-z/OS Unix callers) – Register/Un-register an application
and its connection to be notified for hardware and software events
occurring on the connected CPC or image.

• Input:

•ConnectToken (associated with a CPC or image)

•Event action (Add or Delete)

•Events for which an application wants to be notified

•ENF exit to receive control when event arrives

•BCPii registers the user with ENF for this event(s) such that the ENF exit
is driven only when the CPC and/or image name of the connector
matches.

Programming Basics

▪Examples of events that can be listened to:

–Command completions

–Status changes

–Capacity changes

–Disabled waits

–Power mode changes

–BCPii status changes and communication errors

Programming Basics

Programming Basics

• Services available in any address space
• Program-authorized, and

• SAF-authorized

•Multiple languages supported
• C

• Assembler

• REXX

• z/OS UNIX callers can receive event notifications thru z/OS UNIX-only
services utilizing the Common Event Adapter (CEA)

• Interface Definition Files (IDF, or include files) provided by BCPii:
• C (provided in SYS1.SIEAHDRV.H)

• HWICIC – Main BCPii include file

• HWIZHAPI – Additional constant definitions include file

• Assembler (provided in SYS1.MACLIB)

• HWICIASM – Main BCPii include file

• HWIC2ASM – Additional constant definitions include file

• REXX (provided in SYS1.MACLIB)

• HWICIREX – Main BCPii include file

• HWIC2REX – Additional constant definitions include file

Programming Basics

•BCPii sample programs (provided in samplib):
•C sample written in Metal C:

• HWIXMCS1 provides an example of how to use all of the traditional
BCPii APIs and how to construct a simple BCPii application.

• HWIXMCX1 provides a simple example of how a BCPii Event
Notification Facility (ENF) exit could be coded to field various BCPii-
registered events.

Programming Basics – Samples (non-REXX)

•BCPii also provides a REXX host command environment for System REXX,
TSO REXX and ISV REXX environments. (address bcpii)

• Same authorization requirements as current BCPii applications

• Simpler programming model than in C or Assembler
•Programming style is intuitive for REXX programmer

•Use of stem variables for variable number of items output

• Parameter lists for BCPii services using REXX are simpler than C or Assembler
parameter lists
•Differences documented in the publications

• BCPii REXX programs compatible with the different REXX environments*

• Built-in RC return will indicate if BCPii processed the host command successfully. If
zero, the BCPii return code should be consulted.

* For the common services supported by BCPii in the different environments

Programming Basics – REXX Support

• z/OS BCPii APIs supported in REXX:

Services System REXX TSO REXX ISV REXX

HWICONN X X X

HWIDISC X X X

HWILIST X X X

HWIQUERY X X X

HWISET X X X

HWIEVENT X

HWICMD X

Programming Basics – z/OS BCPii REXX

• z/OS BCPii System REXX support

• Full support of BCPii API suite
• Command and event require non-REXX event exit and a program to wait on an ECB based on event

activity

• Ability for REXX BCPii applications to work with other C or Assembler BCPii
applications

• The Connect Token can be passed to and from the REXX exec and the other compiled BCPii applications.

• Connections have address space affinity
• When AXREXX macro invoker's address space terminates, BCPii will implicitly disconnect all connections

• TSO=YES and TSO=NO environments supported
• TSO=YES allows REXX to interpret the IBM-supplied REXX include file
• TSO=NO requires the IBM-supplied include file to be copied into the exec

• TIMELIMIT keyword can be used to throttle BCPii exec execution time
• The default 30 seconds value may need to be adjusted

Programming Basics

• z/OS BCPii System REXX support (continued):
• Two methods of execution of BCPii REXX execs

• Code an assembler program to invoke the AXREXX macro
• Specify the name of BCPii REXX exec and any of the myriad of AXREXX

options

• New BCPii helper program HWIREXX
• IBM-supplied helper program shipped in SYS1.LINKLIB that authorized users

can invoke to launch their System REXX execs
• Simple REXX execs can be invoked directly without the need to code the

AXREXX assembler macro
• A set of input parameters allows minor customization

• Samplib JCL member HWIXMRJL provides list of parameters HWIREXX takes as input
(supports a subset of AXREXX options)

Programming Basics

• z/OS BCPii TSO REXX Support
• Support of all BCPii APIs except HWIEVENT and HWICMD

•Connections have task affinity
• All connections created by the REXX exec are automatically cleaned-up by BCPii

when exec completes
• Connections cannot be shared with other BCPii applications or REXX execs

• Same SAF authorization requirements as other BCPii applications

• Setup required for TSO REXX support
• IKJTSOxx parmlib member must have the following update:

• AUTHTSF NAMES(HWIC1TRX)

Programming Basics

• z/OS BCPii ISV REXX Support

• Support of all BCPii APIs except HWIEVENT and HWICMD

•Connections have task affinity
• All connections created by the REXX exec are automatically cleaned-up by BCPii when exec

completes
• Connections cannot be shared with other BCPii applications or REXX execs

• Same program and SAF authorization requirements as other BCPii
applications

• Must be invoked from an authorized address space

•To get the “bcpii” host command environment, the REXX exec must
issue the following statement:
• rc = hwihost("ON")

Programming Basics

Example of z/OS BCPii REXX exec in action:

ListType = HWI_LIST_CPCS

address bcpii "hwilist

ReturnCode

ConnectToken

ListType

CPCList.

DiagArea."

If rc <> 0 | ReturnCode <> 0 Then

/* Error handling code here */

Else

Do

Say 'Number of CPCs returned = ' CPCList.0

/* Write the list of CPCs returned. */

Do i = 1 to CPCList.0

say 'CPC '|| i ' = ' CPCList.i

End

End

Programming Basics

•BCPii sample programs (provided in samplib):

• REXX samples:

•HWIXMRS1 provides a sample of how to use the connect,
disconnect, list, query and set APIs in a similar format as HWIXMCS1.

•HWIXMRS2 provide examples of using HWIEVENT and HWICMD in
the System REXX environment. Assembler helper program
HWIXMRA1 is required in order to run the REXX sample.

• Sets up common storage accessible to both ENF Exit and waiting program.

• Provides example of using the AXREXX macro to invoke the BCPii REXX exec

•HWIXMRJL provides sample JCL to run a simple BCPii REXX under
System REXX without having to code an Assembler program

Programming Basics

Recent z/OS BCPii Enhancements

Recent z/OS BCPii Enhancements

• New BCPii Security Controls (z14)
• BCPii performance improvements
• Absolute capping base support
• Absolute capping group support
• New more flexible HWICMD2 service
• Support for larger data returned from SE
• Support for dynamic CPC name change
• New HWISET2 service (multiple attribute set)
• SMF logging & SE logging – V2R2

Reference Material

71

Questions?

We want your feedback!
• Please submit your feedback online at ….

➢http://conferences.gse.org.uk/2018/feedback/BB

• Paper feedback forms are also available from the Chair person

• This session is BB

