
The Necessity for Mainframe
Unit Testing

Sam Knutson

Compuware

November 2018

Session BJ

https://twitter.com/gseukc
https://www.linkedin.com/groups/1741877
https://www.facebook.com/pages/Guide-Share-Europe-UK-Region/174907039241415

Abstract
• Automated unit testing is a critical element to mainframe DevOps success,

speeding development cycles by eliminating bottlenecks and providing assurance
that code changes don’t negatively impact another part of a program. Automated
Unit Testing provides value including:

• Increase velocity to production

• Eliminate dependency on specialized mainframe knowledge

• Empower novice developers to validate mainframe code changes with the same speed and confidence as other code

• Support Continuous Integration and Continuous Delivery

• Reduce time spent manually writing tests, collecting test data or manually creating data

• Increase confidence to make large mainframe code chang

• Facilitate regression testing

• Find out how unit testing can be incorporated into your mainframe development
process. Every methodology for development can benefit from unit testing.
Learn the different techniques for getting developers on board with unit testing
and how it fits in your methodology. As Agile and DevOps become more common,
it essential that unit testing is implemented and used to maintain code quality.
You’ll learn about unit testing methodologies, strategies and benefits.

2

DevOps Product Management Bookshelf

Compuware Confidential Draft

How do you work with your open systems?

Application developers are the craftspeople of the digital business
era…entrenched contributors operating in functional role silos must evolve
their skills to build great software.

- The Renaissance Developer Gartner August 2014

Compuware’s Mission
Next Generation Tools for the Next Generation of Development

• Mainstreaming the Mainframe:
Blended ecosystem that enables
• Distributed and mainframe teams to share

one culture, one process with leading tools of choice

• Dev and ops teams to interact seamlessly

• Elimination of mainframe’s esoteric
nature, making mainframe development
just about syntax

• Commitment to elegant simplicity
in design and usability

• Leverage partnerships to make
widely-used tools applicable to mainframe

Is DevOps and Unit Testing going to come
naturally to mainframer's?

https://youtu.be/MFzDaBzBlL0

Working Code is Gold

• COBOL is Queen!

• Green field vs Brown
field

• More than 200B lines
of COBOL code

• Maintenance/KTLO
vs New Applications

Developers
Need to:

• Understand programs
so I know where
to put changes

• Debug programs
quickly and easily

• Create unit tests
and identify testing
gaps using code
coverage techniques

• Store test results in Sonar
where I have a common view
of code quality

• Automatically get tests
executed when I check in a
program with changes

Testing Concepts
Unit Testing

• Act of testing "unit"
in your application

• “Unit" is often function
or method of class
instance

• Unit also referred to as
"unit under test"

Integration Testing

• Explicitly testing
interaction between 2+
"units“

• Verifies application
components work
together

• Might ensure email was
actually sent
in integration test

Functional Testing

• Form of integration testing
“literally” running
application

• Ensure email was actually
sent
in functional test, because
testing
code end to end

Testing Concepts

Program A

Program B

Unit Test Functional Test

Job/Program

Integration Test

File

Program X Program Y

DB

File

DB

Job/Program

File

Program X Program Y

DB

Program A

Program B DB

File

Program A

Stub B Stub
DB

StubFi
le

Testing Java

• Compiler, JVM, test framework (JUnit) on local machine

• Direct support in IDE

• CI engines with direct support for Git/JUnit

• Mocking frameworks
to stub out dependencies

• Much code work required
in creating test case stubs

• Lacks culture of Continuous Integration (CI) or
test

• Must compile and execute on mainframe

• IDE is UI on top of remote connection to
mainframe

• Shortage of support from CI
engines/orchestration tools

• Non-exisitent mock libraries/
stubbing capabilities

• Like giant Java method; with COBOL:

• Limited structure

• Variables are all GLOBAL

• Limited runtime visibility

• Write, compile and execute COBOL program
to test COBOL program—requires program
to test program

• Testing a program on the mainframe by
providing input and expected output. All sub
programs and data access will be live

Testing COBOL

Java vs. COBOL Testing

• Java and Junit: ”Easily” create mock objects and isolate test

• COBOL: Not possible without writing own test framework

Class A
methodA()

MockClassB
MockClassC

Mock
File

Class A Test
testMethodA()

DB

File

Program A

Program B

Test Program A

Working Effectively with Legacy Code
Legacy code is simply
code without tests

Code without tests is bad code. It doesn’t matter
how well written it is;
it doesn’t matter how pretty or object-oriented or
well-encapsulated it is.

With tests, we can change the behavior of our code
quickly and verifiably. Without them, we really
don’t know
if our code is getting better or worse.

- Michael Feathers

Provide Automated Tests

• Quickly create automated unit tests

• Remove fear of changing code

• Eliminate hassle of moving
around test data

“Un-legacy” Your Code

https://youtu.be/aJN9Um2eeEo

Need Mainframe Program Testing Innovation
• High financial risks of implementing incorrectly

• Speed of mainframe application development
can’t keep pace with systems of engagement
(web, mobile, thick client)

• New workforce—must build expertise

• Suddenly need to work with distributed
DevOps teams and leverage APIs

Automatic Test …

• Creation

• Data capture

• Isolation from subsystems

• Execution

• Integration with other tooling (Jenkins,
SonarQube)

• Case maintenance

• Update updated when program
calculations change

• Make structure updates
for size and type

• Share definitions
and objects
for reduced
maintenance

Types of Test Automation

• 2 billion lines of new COBOL mainframe code every year

• Programs often grow very large (largest so far 600,000 lines)

• Interrelated data = test data difficulty (occurs depending on)

• Many different data formats

• Many different subsystems (Db2, IMS, CICS)

• Poor documentation

• Few existing automated tests

• 30+ years of accumulated poor coding practices

High Level of Test Automation Is Required

New Automated Unit Testing Approach

• Rapid COBOL unit test creation

• Interactive test data collection
in program context with debugger

• Mock objects/stubs
• Db2, VSAM, QSAM, CICS, IMS

• Subprograms stubs

• Easy toolchain integration with Jenkins
and Topaz for Total Test plugin

• “Secret Sauce”
• Completely executable with data, test assertions

• Easy-to-execute across different test systems

JUnit

• Use IDE to generate unit test stub

• Write code into test stub

• Define data for test

• Identify any mock objects needed
to compile code and return
appropriate response

• Code any test prep into test pre-condition

• Codes any test tear down
in test post-condition

• Adds unit test into test suite

• Continuous build process
identifies test suite

• Test Runner executes test suite

• Use Xpediter to gather test data call
parameters, program results

• TTT creates complete test case*

• Unit test uses data stub created by TTT*

• TTT generates data and program stubs*

• TTT Runner allows easy on/off of stubs*

• TTT Runner cleans up after test*

• TTT adds unit test to test suite*

• Continuous build process runs
test suite via CLI

• Test Runner executes test suite

Automated Testing: Distributed vs. Mainframe

Topaz for Total Test (TTT)

*Automated by Topaz for Total Test

• Unit test

• Automatically create test suites, scenarios,
cases

• Central control of test execution

• No invasive code changes to COBOL
programs

• Automatically create test assertions:
• Program input/output parameters

• Db2 Insert/Update/Delete

• IMS ISRT/REPL/DLET

• VSAM/QSAM Write

• Tests can move across system since data stubs
move with test
• Stub data

• Stub subprograms

• Stub stored procedures

• Functional test (load modules)

• Create test case for program (Enter input and expected output)

• UI to view and modify data

• Advanced scripting capabilities

• Automate test setup, teardown and validation

• Domain-specific language to execute ”things” on mainframe

• Combine ”things” in sequence, e.g.:
• Insert/select data from database, send/receive MQ messages, submit job

• Iterate over each row

• Verify output against expected values

Include Topaz for Total Test
and XaTester in DevOps Toolchain
• Jenkins and command line interface

integrate tests with CI/CD

• APIs execute test suite and cases

• Xpediter Code Coverage integration

• SonarQube dashboard integration

Unit Test with Code Coverage in
DevOps Toolchain

https://www.youtube.com/watch?v=c1GQVWcjWH0

Support for Different Testing Roles

• Agile testing versus waterfall testing
• QA embedded in Agile team

• Test group in own silo

• Agile developer writing unit test
• Rich client for complex tests

• Business analyst
doing requirements validation
• Web interface for simple tests

• Unit tests isolate calls to subsystems
like databases and transaction servers

• Unit test isolate test to single COBOL program
and stub out subprogram(s)

• Change unit test to functional test:

• Remove all program and subsystem stubs

• Run main program with all required
subprograms in execution path

Extending Unit Tests to Functional Tests

DevOps
Toolchain

Version Control Continuous Integration Code Quality

Release

ITSM

Deploy Test

Edit Code Validate Code Debug Code Edit/Manage DataAnalyze Code

IdeationProject Management

Develop
Agile Process

Manage

Monitor

Interactive Development Environment (IDE)

Dev QA Prod

IMS Virtualization

Test

Code Coverage

We want your feedback!

• Please submit your feedback online at ….
➢http://conferences.gse.org.uk/2018/feedback/bj

• Paper feedback forms are also available from the Chair person

• This session is BJ

http://conferences.gse.org.uk/2018/feedback/bj

THANK YOU!
Session BJ

Sam Knutson
Vice President, Product Management

+1 313-227-7604
samuel.knutson@compuware.com

linkedin.com/in/samknutson
@samknutson

One Campus Martius, Detroit, MI 48226, USA www.compuware.com

➢http://conferences.gse.org.uk/2018/feedback/fc

http://www.compuware.com/
http://conferences.gse.org.uk/2018/feedback/fc

