



## Leverage Checkpoint Pacing to Reduce Batch Windows

David Schipper BMC Software

November 2018 Session HJ





#### Abstract

Checkpoints are good things for batch IMS applications to take; however, you can have too much of a good thing. Applications that take too many checkpoints are not easy to identify. They end with condition code 0 and produce the expected results. One checkpoint a second is a good rule of thumb, but we have seen programs taking 30, 50 even over 100 checkpoints a second, wasting CPU and elongating elapsed times. How can you identify offending programs and how can you eliminate unneeded checkpoints without changing the programs? This session will discuss a way to find the programs taking too many checkpoints and suggest some things you can do to address the problem.



#### **Legal Notice**

- The information contained in this presentation is the confidential information of BMC Software, Inc. and is being provided to you with the express understanding that without the prior written consent of BMC, you may not discuss or otherwise disclose this information to any third party or otherwise make use of this information for any purpose other than for which BMC intended.
- All of the future product plans and releases described herein relate to BMC's current product development considerations, which are at the sole discretion of BMC and are subject to change and/or cancellation at any time. BMC cannot and does not provide any assurance as to whether these plans will result in any future releases of the nature described. These future product plans should not be viewed as commitments on BMC's part and thus should not be relied upon in customer purchase decisions.

#### **Everything Looks Fine...**

 Your batch cycle ends on time. When the batch grows, you upgrade your capacity. Problem solved!

 Now you have the new normal. But, what's under the still water?

#### What's Under the Water? Checkpoints!

#### What happens at a checkpoint?

- Program goes into a wait
- Snapshot of executing environment taken
- You get flushed out of the processor cache

#### • You save off

- Selected parts of application storage
- DBMS restart information
- GSAM data set repositioning information

#### Checkpoint processing is passed to the respective DBMS

- Updates physically logged
- Buffers are flushed to harden the data
- Locks are released
- Database position is lost



#### Checkpoints



#### Each checkpoint

Concludes a unit of work and commits changes

- IMS Checkpoint
- DB2 Commit
- VSAM Sync

Typically coded into most application programs

#### **Checkpoints are costly**

Checkpoint processing is 100% overhead and creates lots of I/O

It's not uncommon to see hundreds of checkpoints per second in legacy applications

Excessive checkpoints drive higher CPU costs and longer elapsed batch run times Rules of thumb for Checkpoints/Commits

per second for IMS
 per second for Db2

Less than 4 per minute (IMS or 1 per second (Db2) can cause lockouts/deadlocks

No checkpoints is probably not good

# Checkpoint/Commit Frequency Analyzer (CFA)

- Lightweight stand-alone utility that evaluates IMS and DB2 logs
  - Easy to install and execute
- Reports show number of checkpoints/commits taken as well as the frequency
- Suggests candidates with too high/low checkpoint frequency
- Provides savings estimation calculator
- No charge for CFA



## **Preparing for a CFA Test**

- We determine goals for the test and a date for an onsite visit with you
- You get
  - Two tersed files that simply need to be untersed
    - Loadlib with CFA programs and a password module valid for 7 days
    - Sample JCL for report generation
  - A User Guide that describes all options
- We execute the utility together with you during the onsite visit and discuss results

## **Using CFA**



#### Selection of logs

- Explicitly (DSNs of IMS or DB2 logs)
- Implicitly: Specification of RECON or BSDS and timeframe of the analysis
- Thresholds for exceptions
  - Default settings
  - Adjustment possible via control statements
- Reporting can be limited using fiters to select or exclude jobs by
  - Jobnames, IMS PSB names, DB2 Plan names



## **CFA GUI Interface**



- Software/Hardware Compatibility
  - Windows OS
  - Java version 1.8.0\_161

#### • Architecture

- Additional infrastructure not required on z/OS.
- Windows client sends JCL to z/OS JES using FTP and gets output in CSV format.
- Userid/Password validation through z/OS RACF.
- Installation
  - Install folder CFA.ZIP is 2MB in size and can be distributed by email. Extract CFA folder and user is ready to execute GUI interface.



## **Example of IMS Report**

| 2018-04-2                                                                          | 3 (03:46:2 | 7)           |          | -                          | t Frequency A |            |                            |  |
|------------------------------------------------------------------------------------|------------|--------------|----------|----------------------------|---------------|------------|----------------------------|--|
|                                                                                    |            |              |          | Checkpoin                  | t Frequency R | leport for | IMS R=14                   |  |
| LOG time span: FROM 2017-317 13:41:12.99 TO 2017-317 14:13:22.11 DURATION 00:32:09 |            |              |          |                            |               |            |                            |  |
|                                                                                    |            |              | JOB      | START                      | CHECKPOINT F  | REQUENCY   |                            |  |
| JOB                                                                                | PSB        | #CHKPTS/TYPE | DURATION | TIME                       | /MIN          | /SEC       | Exceptions                 |  |
| DAPBA00J                                                                           | DAPAUA00   | 61 FP-sync   | 00:31:24 | 13:41:56                   | 1.94          |            | *** Less than 4 chkp / min |  |
| FSTB0993                                                                           | FSTG1600   | 1 FP-sync    | 00:00:01 | 13:45:28                   | 60.00         |            |                            |  |
| FSTBT877                                                                           | FSTA1150   | 102 FP-sync  | 00:00:04 | 13:49:00                   |               | 25.50      | *** More than 1 chkp / sec |  |
| FSTB0991                                                                           | FSTG1600   | 1 FP-sync    | 00:00:08 | 13:55:12                   | 7.20          |            |                            |  |
| FSTBF87A                                                                           | FSTA1150   | 2414 FP-sync | 00:00:38 | 13 <b>:</b> 57 <b>:</b> 58 |               | 63.52      | *** More than 1 chkp / sec |  |
| FSTBV87A                                                                           | FSTA1150   | 326 FP-sync  | 00:00:05 | 13:58:44                   |               | 65.20      | *** More than 1 chkp / sec |  |
| FSTB0991                                                                           | FSTG1600   | 1 FP-sync    | 00:00:08 | 14:10:11                   | 7.20          |            |                            |  |

#### Default thresholds

- No checkpoint
- Less than 4 checkpoints per minute
- More than 1 checkpoint per second



## **Example of DB2 Report**

| 2018-05-07 (03:37:42) |            |          |            | Ch         | -                | -        | ncy Analyzer V1.0            |
|-----------------------|------------|----------|------------|------------|------------------|----------|------------------------------|
|                       |            |          |            |            | Commit Frequen   | icy Repo | ort for DB2                  |
| LOG time              | span: FROM | 2018-108 | 10:51:21.6 | 7 TO 2018- | -108 12:37:51.42 | DURATI   | ON 01:46:29                  |
|                       |            |          | JOB        | START      | COMMIT FREQU     | ENCY     |                              |
| JOB                   | PLANNAME   | #COMMITS | DURATION   | TIME       | /MIN             | /SEC     | Exceptions                   |
| RDAALCQA              | ASUC1QDS   | 1104     | 00:00:19   | 11:58:49   |                  | 58.10    | *** More than 5 commits/ sec |
| RDAALCQA              | ASUC1QDS   | 2652     | 00:01:13   | 11:59:23   |                  | 36.22    | *** More than 5 commits/ sec |
| RDAALCQA              | ASUC1QDS   | 20065    | 00:21:18   | 11:37:12   |                  | 15.70    | *** More than 5 commits/ sec |
| ASUTSPTF              | RGAC1QDS   | 4273     | 00:06:05   | 12:31:46   |                  | 11.71    | *** More than 5 commits/ sec |
| RDAALCQA              | ASUC2QDS   | 408      | 00:00:39   | 11:33:45   |                  | 10.46    | *** More than 5 commits/ sec |
| XXXXXXXX              | XXXXXXXX   | 26       | 00:00:10   | 11:35:49   |                  | 2.60     |                              |
| XXXXXXXX              | XXXXXXXX   | 23       | 00:00:10   | 11:33:33   |                  | 2.30     |                              |
| XXXXXXXX              | XXXXXXXX   | 156      | 00:01:11   | 10:53:34   |                  | 2.20     |                              |
| XXXXXXXX              | XXXXXXXX   | 23       | 00:00:11   | 12:31:34   |                  | 2.09     |                              |
| XXXXXXXX              | XXXXXXXX   | 23       | 00:00:12   | 11:37:00   |                  | 1.91     |                              |
| XXXXXXXX              | XXXXXXXX   | 26       | 00:00:21   | 11:32:56   |                  | 1.23     |                              |
| XXXXXXXX              | XXXXXXXX   | 7        | 00:08:01   | 10:54:40   | .87              |          | *** Less than 60 commits/min |

#### Default thresholds

- Less than 1 commit per second
- More than 5 commits per second



#### **CFA Analysis Reports**



**Check Point Distribution** 



> 1 ckpt/ sec < 4 ckpt/min < Others</p>



#### **CFA Cost Saving Estimator**

| Approximate Cost Saving Report                 |           |  |  |  |  |  |
|------------------------------------------------|-----------|--|--|--|--|--|
| Avg CPU Cost per Checkpoint/Commit in seconds: | 0.009737  |  |  |  |  |  |
| Total Number of Processors:                    |           |  |  |  |  |  |
| Total Number of MIPS :                         |           |  |  |  |  |  |
| MIPS Cost/year \$:                             | 9.80      |  |  |  |  |  |
| CPU Time Saved in Seconds:                     |           |  |  |  |  |  |
| Estimated Annual Savings:                      |           |  |  |  |  |  |
|                                                | Calculate |  |  |  |  |  |



## What to do about excessive checkpoints

- Ignore them and live with the cost
  - It isn't broke so don't fix it
- Change application programs
  - Requires interaction with other areas applications development, QA, production control, etc.
  - Need to do full testing scenarios
  - Go through change control process
  - Probably only good until next CPU upgrade, then do it again
- Implement checkpoint pacing

### **Checkpoint Pacing**







#### Application Restart Control (AR/CTL) Checkpoint Pacing

- Filters/throttles checkpoint activity based on your processing requirements
  - Prime shift heavy online access
    - Short checkpoint interval to release locks and help online users
  - Second/third shift heavy batch access
    - Longer checkpoint interval to facilitate batch
- Centrally managed
  - No need to regulate the checkpoint interval in thousands of individual programs

## **AR/CTL Automatic Checkpoint Insertion**

- Application program does not have enough checkpoints
- Locks are held too long causing deadlock situations and abends
  - AR/CTL automatic checkpoint insertion
  - Implement checkpoint processing through JCL keywords



#### **Outside of the application code!**



## **Checkpoint Pacing Savings**

- Reduces CPU usage
- Reduces elapsed time to complete batch jobs
- Frees up resources for other processing
- Saves developer effort
- Increases application availability



# THANK MOU



### We want your feedback!

- Please submit your feedback online at ....
  http://conferences.gse.org.uk/2018/feedback/HJ
- Paper feedback forms are also available from the Chair person
- This session is HJ









| Tuesday 6 <sup>th</sup> November |          |        |              |                                                        |                |  |  |
|----------------------------------|----------|--------|--------------|--------------------------------------------------------|----------------|--|--|
| Start Time                       | End Time | Stream | Room         | Title                                                  | Speaker        |  |  |
| 11:45                            | 12:45    | IMS    | Wellington B | The No Cost Way to Manage the IMS Catalog              | David Schipper |  |  |
| 15:00                            | 16:00    | IMS    | Wellington B | Current Trends in IMS Analytics                        | David Schipper |  |  |
| 16:30                            | 17:30    | zCMPA  | Woodcote     | zIIP stealing GCP MSUs time for Capacity<br>Management | Donald Zeunert |  |  |

| Wednesday 7 <sup>th</sup> November |          |        |              |                                               |                |  |  |
|------------------------------------|----------|--------|--------------|-----------------------------------------------|----------------|--|--|
| Start Time                         | End Time | Stream | Room         | Title                                         | Speaker        |  |  |
| 09:30                              | 10:30    | Db2    | Nurburgring  | Know your onions when it comes to Db2 indexes | Randy Bright   |  |  |
| 09:30                              | 10:30    | IMS    | Wellington B | IMS Checkpoint Pacing                         | David Schipper |  |  |
| 10:45                              | 11:45    | zCMPA  | Nurburgring  | How many GCP MSU is my CF stealing?           | Donald Zeunert |  |  |



