

What should you be aware of before your manager asks you to recover lost data?

Michael Kalouš CA Technologies

November 2018, Last update 2018-11-07 Session IH

What should you be aware of **before** your manager asks you to recover lost data?

Agenda

- Reasons and Resources for recovery
- What might need to be recovered?
- Recovery points
- Data recovery SQL
- Rebuilding indexes vs. recovering indexes
- REPORT RECOVERY
- After recovery
- Speeding up the process
- Recovery with non matching OBIDs

Reasons for RECOVERY

- Good
 - (?)
- Bad and not so uncommon
 - Software problems and user errors
- Worse and not so common
 - Object accidentally dropped
 - Hardware error
 - Site disaster

Resources for Recovery

- Basics DB2
 - SYSIBM.SYSCOPY, SYSIBM.SYSLGRNX
 - DB2 Log
 - Bootstrap Data Set (BSDS)
 - Utilities (RECOVER, REBUILD, REPORT RECOVERY)
- More
 - A log processing tool (it is not DSN1LOGP!)
 - Advanced recovery tool
 - Records created by the tools (tables, datasets). Do you have backups of these?

What might need to be recovered

- Database object(s)
- Application we know PLAN/PACKAGE?
- DASD Volume, Storage Group
- Bootstrap Data Set (BSDS), Log data set
- DB2 catalog and directory, whole DB2 Subsystem (SLB)
- Dropped table or tablespace. Result of an "unfortunate accident". Fun begins when the object can no longer be created
- Object that is not logged (was that wise?)
- Data in the tables

What is the PIT I'm looking for? Is it consistent? Inflight transactions?

- Typical recovery points
 - Recover to the current point in time
 - Recover to a specific RBA or LRSN, or timestamp
 - Recover to a QUIESCE or a quiet point
 - Recover to a named log point
 - Recover to the last full image copy

Quiet Point as a good recovery point

- Recovering to a point where there was no activity is beneficial
- Range of log where there is no activity against selected group of database objects is a quiet range
- Log processing tool can identify these ranges, identify their lowest RBAs and register them as ICTYPE='Q' (QUIESCE) rows

Inflight transactions Recovery Point not Quiet

- You might not have a luxury to recover to a quiet point
 - RECOVER TORBA/TOLRSN X'......'
 - Effects of unfinished transactions are rolled back by the RECOVER utility

Forward Recovery vs BACKOUT

- When you have your recovery point (and your DB2 VSAM)
 - Forward. Merge Copies and log apply
 - BACKOUT. Read DB2 log and undo changes. If your copy is too old...

Data Recovery

- Principles
 - Application developers, while building the applications which access database objects, can mess up the data either on test subsystems or on production subsystems
 - Anyone else with the database access can do "something wrong"
 - Database object is still there, online, only the data is wrong
 - DBA is required to resolve this situation and recover the data into its original state
- Resources you need
 - Log processing tool
 - DB2 log

Data recovery – UNDO SQL from DB2 LOG

Recovering an Application

- A business application is using a set of database objects. It might not be obvious that the database objects are related.
- Best if the development team knows what database objects are used, the knowledge is documented and the documentation is updated.
- The **SYSIBM.SYSPACKDEP** catalog table can help, if the answer is "I am not sure, but I know the package name".
- For given package name, you will get NAME, QUALIFIER, and TYPE of all objects involved (tables, views, indexes, and more)
- Static SQL only. For dynamic queries, SYSIBM.SYSDYNQRYDEP

Rebuild or Recover Index

- Rebuild
 - No need to keep image copies. This saves a lot of space
 - Is more CPU demanding (read TS, extract keys, SORT, assemble pages, write to the index space) Index on expression – evaluate the expression for every key – more CPU
 - After rebuild, the index records are in ideal positions, the index is fresh
 - Always available option. Index keys perfectly match data in the tablespace
- Recover
 - You must have a copy and keep the copy
 - Recovery requires I/O only. For very large indexes, it can be an advantage
 - Index records are in their original non-ideal positions
 - Recover to the same PIT as the tablespace. Recovery in parallel with TS

Commodore

Rebuild or Recover Index

- When your tendency is REBUILD
 - Check indexes on large objects
 - Double check NPIs on large PBRs and PBGs
- When your tendency is RECOVER
 - Create copies together with tablespaces in one step
- Rebuilding with availability
 - REBUILD INDEX SHRLEVEL ... CHANGE

REPORT RECOVERY

- The recovery history from SYSCOPY, SYSLGRNX and BSDS
 - Copies
 - Other recoverable and non-recoverable events (LOAD, REORG, MODIFY, PIT RECOVERY, REBUILD)
 - Log inventory from BSDS
 - Log ranges
- Other
 - List of available system-level backups (SLBs)
- All in one dense report

REPORT RECOVERY – SLB example

START STCK			DATA COMPLETE	DATA/LOG COMPLETE				
DATA	LOG	RBLP	LRSN	DATE	LTIME	LOCATION NAME		
D32311C1B4F6943	2 0000000000000000000000000000000000000	00D31E74089984882A00	00D32311C0D69F648000	2017-09-14	02.59.42	DNGPPTIB		
TOKEN = C4D5F3F1D32311C1B4F6943200D31E74089984882A00 INCREMENTAL = N, SUBSYSTEM ID = DN31, MEMBER NAME = DN31								
Z/OS = 1.02, CAPTURE CATALOG INFO = Y, LOG COPY POOL = N								

DFSMShsm CONTROL DATASETCOPY	POOLLISTING	AT 12:04:01 ON 17/09/	21 FOR SYSTEM=CA31						
COPYPOOL=DSN\$DNGPPTIB\$DB									
ALLOWPPRCP FRB=NO FRR=NO									
VERSION VTOCENO DATE	TIME	FASTREPLICATIONSTATE	DUMPSTATE						
001 N 2017/09/14	02:59:36	RECOVERABLE	NONE						
TOKEN(C)=C'DN31LA.6mLrdh									
TOKEN(H)=X' C4D5F3F1D32311C1B4F	<mark>69432</mark> 00D31E740	89984882A00 <mark>000000000000000000000000000000000</mark>	000000000000000000000000000000000000000						
TOTAL NUM OF VOLUMES=00001, INCREMENTAL=N, CATINFO=Y, FCFRR=N, RECOVERYINCOMPLETE=N, FCCG=N									
SGNAME SOURCE - TARGET SOURCE	E – TARGET SO	URCE - TARGET SOURCE	- TARGET						
SGDNGPD DN1D01 - DN1D02									
END OF COPY POOL LISTING									

Can I avoid recovery?

- Yes, under some conditions
 - PIT
 - You still have DB2 VSAM datasets and you know they are intact
 - No changes since the indicated log point
 - SCOPE UPDATED
- Recovery avoidance saves resources

Ready to make decisions?

- Recovery Point
 - To which point to recover
- Recovery utility vs. Log Processing Tool
 - Quick direct access to pages
 - Generating SQL from DB2 log and executing it
- Standard forward recovery vs. BACKOUT
 - Merge copies and apply log
 - Process log and undo changes
- Rebuild indexes or recover them from image copy
- Advanced recovery tools can help
 - Offer possible options for recovery
 - Rate amount of work for each option

How I can speed up the process of recovery? Technical Aspects

- General Rule
 - A lot depends on the backup side, how much resources you are ready to spend?
- Reduce work for the tools in advance
 - Create incremental copies to reduce log apply
 - Merge incremental image copies to reduce number of copies
 - Borrow some IMS practice and accumulate changes for critical objects
 - Consider enabling DCC for your log processing tool
- Make most of the I/O subsystem
 - Use DASDs
 - Backup on partition level and use options for parallel processing
 - Consider stacking image copies on tapes using LBI
 - Fast replication capabilities

How I can speed up the process of recovery? Procedure and Organization

- Have a recovery procedure outlined and in writing
- Define roles and have answers to the question
 - "Who can make a decision to which point in time we are heading with the recovery"
 - "What is the scope of recovery?"
- Ensure involved workers have required authorizations
- Allocate resources to practice and test the recovery procedure

After Recovery

- Phew, the data is back, but remember ...
 - Deal with dependent object statuses. You can observe RECP, RBDP and CHKP.
 - Do not stray from the access path.
 Some of DB2 statistics can be inaccurate. Gathering statistics for tablespaces and indexspaces is needed to prevent access path degradation.
- Before declaring victory
 - Create new backups
 - Let users check the data and run their applications

Final Topics

Reasons for RECOVERY

- Good
 - Practicing. Simulation and Estimation
- Simulation, fully featured "dry recovery"
 - Everything is recovered is in the real run, except
 - Database objects are live and not touched
 - The resulting DB2 VSAMs are "aside" the original ones
 - You have a solid evidence of
 - Recoverability
 - Time needed to recovery
- Estimation
 - A "lightweight" version of simulation
 - Information on recovery resources is analyzed and time needed to recover is estimated

Service Level Agreement (SLA)

- In how much time the application must be up and running when something goes wrong.
- Keep in mind
 - Tapes and disks still have limited speed v << c
 - Giant objects will take time to recover despite high image copy frequency
 - Humans need time to make decisions

- Fast replication solutions (FlashCopy, SLB) can be an answer when traditional copies are out of breath. Availability x COW.
- Simulate and estimate to check if you fit

Recovering Objects with Non-Matching OBIDs

- Non-matching OBIDs ?!
 - At the time of full copy, the object had different OBID than at the time of recovery
- When this is needed?
 - When recovering a dropped database object (ouch)
 - When migrating data from one object to another object using an image copy
- What the recovery tool must handle
 - Change the OBIDs in the pages, when needed
 - Identify log records to apply with old OBIDs

Dropped Table

- Implications of dropping a table are very serious
- Much is lost
 - The data, associated objects
 - Information in the catalog (SYSTABLES, SYSCOLUMNS, etc.)
 - Data in SYSIBM.SYSCOPY, SYSIBM.SYSLGRNX
 - Statistics, Authorizations, Triggers
 - Packages are invalidated
- Something is still left
 - Image copy datasets
 - Records in the DB2 log.

Dropped Table

- Recovering the dropped table
 - Recovery is officially described in 11 manual steps.
- Advanced recovery or log processing tool helps with the process
 - DB2 logs the changes to the catalog tables (SYSTABLES, SYSCOLUMNS,...,SYSCOPY)
 - DDL (table + assoc. objects) is reconstructed and available copies are identified
 - Recovery step is prepared (with or without log apply)
 - REDO SQL is generated from the log and executed (without log apply)
 - Indexes are rebuilt
 - Statistics restored or regenerated. Invalidated packages are rebound
- All you need to know is the name of the object and approximate time range when it was dropped

Migrating Data with RECOVER

- Make image copy a dual-use technology
 - Backup and a convenient source for data migration
- Pros and Cons
 - Faster than a sequence of UNLOAD and LOADs Operating on page level No temporary unload dataset is needed
 - More sensitive to differences between the source and target objects Some differences can be prohibitive
- Is a non-recoverable event
 - Image copy is recommended

Migrating Objects with Non-Matching OBIDs

Conclusions

- Review your backup strategy.
 Do you have a strategy for everything that might need recovery?
- Know in advance your application, dependencies, critical objects. This way, you will know what to recover
- Roles in the process should be defined. Who makes the decisions?
- Remember that recovery requires resources CPU, tape units, disk space, resources for SORT
- Know strengths and weaknesses of your tools
- Get a log processing tool
- JCLs should can be prepared in advance
- and PRACTICE and TEST your recovery

Questions

We want your feedback!

- Please submit your feedback online at
 - http://conferences.gse.org.uk/2018/feedback/IH
- Paper feedback forms are also available from the Chair person
- This session is **IH**

