
Lab 1 overview
This lab shows you how to launch your own instance of Node-RED by using the IBM Cloud boilerplate. You can deploy Node-
RED as a stand-alone application, or flow, but using the Cloud platform as a service means that you don’t need to worry about
installing Node-RED prerequisites.

Prerequisites
You need an IBM Cloud account to complete these lab exercises. You can register for an account @ IBM Cloud registration

Important: There are limitations on the use of some services with the free Lite Plans and you may see warning messages as you
progress through the exercises. You can use only 12 free services in IBM Cloud and, in this course, you will need 6 services. So,
if you already have an IBM Cloud account, be sure you are not using more than 6 services. Please check the service within IBM
Cloud for usage on Lite Plans. This exercise has only been tested using Chrome or Firefox as the browser. Some people have
reported problems in Lab 3 using Internet Explorer

In these labs, you use the following services:

• Language Translator
• Tone Analyzer
• Watson Assistant
• Speech to Text
• Text to Speech
• Cloudant database

Create a Node-RED instance

In this step, you will create an instance of Node-RED running on IBM Cloud.

1. Log in to IBM Cloud.
2. Click Catalog.
3. Click on Starter Kits, to list.
4. From the Starter Kits list, click Node-RED Starter.

If you are using an IBM Cloud Lite account, you need to choose the Internet of
Things Platform Starter, instead.

5. Give your starter application a unique name and host name. The host name does not need to be the same as the app name,
but it can be the same.

6. Select Create.

7. Wait for your new application to start.

Connect Watson services

In this step, you’ll connect the following Watson services to your Node-RED instance:

• Language Translator
• Watson Assistant (formerly Conversation)

You’ll use the Language Translator service in this lab and the Watson Assistant services in Lab 3.

If you already have instances of these Watson services, you can connect them to your Node-RED application. (Skip to step 7.)

1. Go to the IBM Cloud catalog, and search for Language Translator.

2. Select the service and ensure that the region, organization, and space are the same as your Node-RED instance. You will
only need the Lite plan for the labs in this course.

Click Create to create the service.

3. Go back to the catalog, and search for Watson Assistant (formerly Conversation).

4. Select the service and ensure that the region, organization, and space are the same as your Node-RED instance and
Language Translator service. Select the Lite plan and click Create.
The next step is to connect the Language Translator and Watson Assistant services to your Node-RED application. For
each service that you create, credentials are automatically generated that allow you to use the service. By connecting the
services to your Node-RED instance, the credentials are available for the application to use without you having to
manually enter them.

5. From the IBM Cloud dashboard, click your Node-RED application under the name column.

6. Click Connections.

7. Click Create connection.

 You should see the two services that you just created.

8. Hover over the Language Translator and click Connect.
 When prompted click connect without

changing the Service Roles.

9. When you’re prompted to restage, click Cancel because you want to connect to one more service before you restage.

10. Click Create connection again and repeat the previous steps to add the Watson Assistant (Conversation) service. This
time click Restage.

11. Wait for the application to restart. When your application has
restarted, you will see the status reported as “Running.” Click
Visit App URL to open your running Node-RED application to
see the landing page of your Node-RED instance.

12. Follow the steps to secure your instance (which is advisable)
by creating a user name and password.

13. Click Go to your Node-RED flow editor to open the editor.

14. You should then be asked to login to your
Node-RED instance using the credentials you
used to secure your app.

If you created an IoT Start application, a
sample app is automatically created in your
Node-RED instance., but you won’t be using
this.

15. Click the Add icon (+) to create a new flow.

Create your first flows **

In this section, you’ll create your first flows in the Node-RED flow editor. An application in Node-RED is called a flow. The
palette in the left column shows you all the available nodes, the sections can be collapsed or expanded by clicking on the arrow
next to section title.

The nodes are grouped by category.

1. Select an input inject node and drag it onto the canvas.

2. Select an output debug node and drag it onto the canvas.

3. Link, or wire, the two nodes together by clicking and
dragging your cursor from one node to the other. Note that the debug and inject nodes change their display names when you
drag them onto the canvas. This name change is expected and shows additional context for the node.

4. Double-click the timestamp node. For the Payload field, select string.

Enter a string, such as
Hello World, this
is my first Node-
RED application. Then
in the Name field, enter a
name for this node, such as
Hello World inject.

Click Done.

5. The blue circles indicate that your flow has unsaved changes, which
means that the application needs to be deployed.

6. Click Deploy to deploy and save your changes.

The debug node writes to the debug tab, which helps you monitor the flow through
your application.

7. To initiate the flow, click the tab linked to the inject node.

You now see the output on the debug tab.

8. In the filter nodes search field, enter translator to find the language translator node.

9. Drag the node onto the canvas so that it lies in between the
inject and debug nodes. You can move the nodes to make
more space. To remove an unwanted line, select the line
and press Delete on your keyboard.

10. Double-click the language translator node.
Set Mode to Translate
Leave Domains set to General
Leave the Experimental Neural Translation blank.
By default, the source will be English and the target Dutch, however I
have used Spanish as the target

Click Done to save your changes.

11. Select the language translator node and click the info tab.

Notice that the node puts its translated
output in msg.translation. msg is a
reserved object that Node-RED uses to
allow individual nodes to communicate
with each other. Think of msg as an
envelope into which one node places

information that allows another node to read it. The language translator node is
expecting to find a payload that is already in the msg envelope, and it will insert a
translation into the msg envelope.

12. Open the debug node and change the output to msg.translation. Enter the word translation after msg.

Click Done to save your changes. Then, deploy your flow.

13. Initiate the flow by clicking the tab on the inject node.

View the translated text in the debug tab. The application is translating the text that you
entered in the Payload field of the inject node.

In most languages, “Hello World” will be translated however Spanish does not translate
unless the “w” is lower case.

14. You should now have a running instance of a Node-RED application on IBM Cloud with the Watson Language Translator
and Watson Assistant services, and you should be able to create basic flows.

Lab 2 overview
This lab will expand on your first Node-RED flow. You’ll create Node-RED flows that use:

• HTTP and HTML web pages
• JavaScript
• AJAX to consume a REST API
• The Watson Language Identification service

Prerequisites

Complete Lab 1 and you should already have a running instance of Node-RED with the Watson Language Translator service
connected.

Create a simple web page

In this section, you will create a basic “Hello World” web page by using Node-RED.

1. Open the flow editor in your
instance of Node-RED.

Create a new flow tab by
clicking +.

2. Double-click the new tab and enter a name for the new flow tab, then click Done.

3. Drag and drop an input http node onto the canvas. Use the filter nodes search field to find the
nodes.

Drag and drop an output http response node onto the canvas.

Drag and drop a template node onto the canvas between the http and http response nodes.

4. Wire the three nodes together.

5. Double-click the template node to edit it.
Enter the simple HTML code:

Click Done to save your changes.

6. Double-click the input http node. Edit it to create an HTTP route to your web page by entering /<some string> in
the URL field. Enter a name such as HTTP Hello World.

 Click Done and deploy your changes.

7. Open a new browser tab and navigate to your new web page. The web address will be based on your Node-RED web
address that is appended with the URL of your web page.

You should see your “Hello World” web page.

	 	

Add JavaScript to your web application

In this section, you’ll modify your “Hello World” web page to include a text entry field and JavaScript.

1. Open the flow editor to your instance of Node-RED.

2. Double-click the template node and replace the code with the HTML in the file GSEBW-HelloWorld01. Click Done and
deploy your changes.

3. Try out your JavaScript-enabled web page.

 Enter your name and click Enter.

	 	

Create a REST API

In this section, you’ll modify your “Hello World” web page to invoke a REST API that you will create. This will show you how
to do two important tasks:

• How to consume a REST API. This could be any REST API from any source, which allows you to add extra capability
into your application.

• How to create a REST API in Node-RED. This will allow you to create reusable chunks of functionality that can be
consumed by other flows that you create in Node-RED, and also be consumed by other applications, even if they are not
Node-RED applications and even if they are not running in IBM Cloud.

1. Open the flow editor to your instance of Node-RED.

2. Double-click the template node and replace text with the HTML from the file GSEBW-HelloWorld02.

3. Drag and drop an http input node, another output http response and a function node onto the canvas.

4. Wire the nodes together.

5. Double-click the input http node and specify the following information for each field:
o Method: POST
o URL: /langidentify
o Name: HTTP REST Identify Language

 Click Done.

6. Double-click the function node. Add the following code under
Function and add Process Output to the name field:

The phrase “I don’t know” will be your default answer when the
service is unable to process the request. You haven’t yet added the
service, so this response is appropriate because your application
doesn’t know how to process the request. Click Done and deploy
your changes.

7. Test your application.

	 	

Consume the Watson Translator service

In this section, you will modify the REST API to invoke the Watson Language Translator service’s Language Identification
method.

1. Open the flow editor in your instance of Node-RED.

2. Delete the connections between the last three nodes by clicking the connectors and pressing Delete on your keyboard.

3. Drag and drop a function node and a language identify node onto the canvas. Wire the nodes together.

4. Double-click the new function node and enter code that takes the input from the REST call and makes it available for the
Language Identify service to use. Enter this information and then click Done:

o Name: Extract Input
o Function:

msg.payload = msg.req.body.msgdata;
return msg;

5. Double-click the second function node and add code that will send the response
from the language identification service back to the client that is invoking the service. Enter this information and then
click Done:

o Name: Process Output
o Function:

msg.payload = {};
msg.payload.identifyresponse = "I
don’t know";
if (msg.lang && msg.lang.language){
 msg.payload.identifyresponse =
msg.lang.language;
}
return msg;

6. Deploy your changes.

7. Test your application by entering text other than English, such as
Spanish text. Try other languages.

You now have a REST API that invokes the Watson Translator Language Identification method and an HTTP web application
that invokes this API.

	 	

Lab 3 overview
This lab shows you how to add Watson services and community nodes to your Node-RED applications.

Node-RED comes with a core set of useful nodes, but you can use a growing number of additional nodes from both the Node-
RED project and the wider community.

You’ll add the following Watson services:

• Speech to Text
• Language Translator
• Tone Analyzer
• Watson Assistant
• Text to Speech

You’ll also add code that allows you to send tweets to your Twitter account.

Find community nodes

The Node-RED instance that you are running in IBM Cloud comes with a sample set of nodes, but you can also use community
nodes, which are created and published by a community of developers. You will import node libraries from the community to
create nodes for a microphone, audio, and a dashboard. In this section, you will create the Interpreter and a conversation bot (OK
Watson) flows from the Starter kits on the Watson Developer Cloud Github repository.

1. Open	the	web	page	that	contains	the	two	starter	applications	that	you	will	be	re-creating:		

https://github.com/watson-developer-cloud/node-red-labs/tree/master/starter-kits

	

You will now learn how to find nodes like these for yourself.

2. Open a new browser page and navigate to the Node-RED libraries at https://flows.nodered.org/.

3. Search for a microphone node that you will add to your application.
Select the nodes check box. Do not select flows.

	

The node-red-contrib-browser-utils library provides nodes for a
microphone, camera, file inject, and unzip.

4. Search for audio. Among the results you should see two libraries: the
node-red-contrib-play-audio and the node-red-contrib-media-utils
library.

The node-red-contrib-play-audio library provides a speaker node. The
node-red-contrib-media-utils library provides media nodes for video
and audio streams. We only require the speaker for this lab.

Add the community nodes to the Node-RED palette

To make these nodes available to your instance of Node-RED, you need to add them to your Node-RED palette.

1. Click the Add (+) icon to create a new flow.

2. Create a new tab and name it Interpreter, then click Done.

	

3. In the top right corner next to “Deploy,” click the menu to open the options page.

Select Manage palette.

The Nodes page tells you the nodes and versions that are already installed in your Node-RED
instance.

4. Click the Install tab and search for node-red-contrib-browser-utils, then
click install.

	
	

5. Click Install again in the “Install nodes” window.

	

6. Repeat the previous steps to install node-red-contrib-play-audio. After both nodes are installed, click Close and you will
be returned to the flow.

7. Search for the microphone node.

	

The microphone node uses the browser capabilities that are available only on
Chrome and new versions of Firefox.

8. If you are not using a supported browser for the microphone node, switch to Chrome or Firefox.

The microphone node will need access to your computer microphone, which is possible only on HTTPS. If
your instance of Node-RED is running on a platform such as IBM Cloud, make sure you are using HTTPS.

9. Drag and drop an input microphone node, a function delay node and an output play audio node onto the canvas.

10. Wire the nodes together and deploy your changes.

	

11. Click the tab on the microphone node to start your recording.

12. If prompted, allow the node to access the microphone or share the selected device
depending on your browser.

	

13. Speak to the microphone, then click the tab to stop the recording.

After about five seconds, you should hear your recording.

	
	

Add the Speech to Text, Tone Analyzer, and Text to Speech services

The applications that you’ll be creating use the Speech to Text, Tone Analyzer, and Text to Speech Watson services. In this
section, you’ll connect those services to your Node-RED Instance.

1. Go to the IBM Cloud catalog and search for the Speech to Text service.

Click Create and then go back to the catalog.

2. Repeat the process for the Tone Analyzer service and Text to Speech service.

3. Go to your IBM Cloud dashboard and select your Node-RED application.

4. In the navigation pane, select Connections.

5. Click Create Connection.

6. Connect the three services you just created to your Node-RED application. For the first two connections, do not restage
your application. On the last connection, restage.

Your connections page should look like this:

7. Wait for your application to restart and you will see green running light.

	 	

Re-create the Interpreter application

In this section, you will re-create the Interpreter application on GitHub, which is a Node-RED flow that translates audio recorded
by a microphone into a variety of languages.

1. Go	to	your	Node-RED	flow	editor.	Select	and	delete	the	wires.	
	

	
	

2. Drag	and	drop	the	speech	to	text	node	onto	the	canvas.	Select	the	speech	to	text	node	and	click	the	info	tab.	
	

	
	

3. Scroll	down	and	note	that	the	input	is	expected	to	be	an	audio	buffer	on	
msg.payload.	 	
	 	
	 	
	 	
	

4. Scroll	further	down	and	note	that	the	output	will	be	placed	on	
msg.transcription.	 	
	 	
	 	
	 	
	

5. Double-click	the	speech	to	text	node	to	edit	the	configuration.	Set	the	language	to	US	English	and	clear	the	Speaker	
Labels	check	box.	Then,	click	Done.	
	

	
6. Wire	the	microphone	node	to	the	speech	to	text	node.	 	

	 	
	 	
	 	
	

7. Drag	and	drop	a	language	translator	node	onto	the	canvas.	 	
	 	
	 	
	 	
	 	
	 	
	

8. Select	the	language	translator	node.		Go	to	the	info	tab	and	note	that	the	input	is	
expected	on	msg.payload	and	the	output	is	on	msg.translation.	
The	speech	to	text	node	sends	output	to	msg.transcription,	but	the	language	
translator	node	expects	input	on	msg.payload.	This	means	that	the	nodes	cannot	be	
connected	directly.	
	

9. Drag	and	drop	a	function	node	onto	the	canvas.	Then,	double-click	the	function	node	to	edit	it.	Add	the	following	name	
and	code	that	allows	the	output	from	the	speech	to	text	node	to	be	passed	to	the	language	translation	node:		

Name: Prepare for Translation

Function:
msg.payload = msg.transcription;
return msg;

Click Done.

10. Wire	the	speech	to	text,	function,	and	language	translator	nodes.	
	 	
	 	
	 	
	 	
	 	
	 	
	

11. Double-click	the	language	translator	node	to	configure	it.	Select	
your	source	and	target	language.	For	example,	select	English	and	
French.	Then,	click	Done.	
	
	
	
	
	
	
	
	
	
	
	
	

12. Drag	and	drop	the	text	to	speech	node	onto	the	canvas.	Then,	select	the	node	and	
look	at	the	info	tab.	Scroll	down	and	note	that	the	input	is	expected	on	msg.payload	
and	that	the	output	will	be	placed	on	msg.speech.	

This means that the language translator node, which outputs the simple translation on
msg.payload, can be connected directly to the text to speech node. However, the text
to speech node cannot be connected directly to the play audio node.

13. Double-click	the	text	to	speech	node	to	configure	it.	Specify	a	language	(it	should	be	the	same	as	the	language	in	the	
translator	node),	voice,	and	format.	Then,	click	Done.	
	

14. Drag	and	drop	a	function	node	onto	the	canvas.	Then,	
double-click	the	function	node	to	edit	it.	Under	Function,	
set	msg.payload	=	msg.speech	so	that	it	points	to	the	audio	
from	the	text	to	speech	service	and	it	can	be	passed	to	the	
play	audio	node.	
	
Name:	Prepare for Speaker
Function:	
 msg.payload = msg.speech;	
return msg;	
	
Click	Done.	

	 	

15. Wire	the	nodes	together.	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

16. Deploy	your	flow.	You	can	now	try	recording	audio	with	your	application.	
	

17. To	record	yourself	speaking,	click	the	microphone	tab,	speak	to	your	computer	mic,	and	then	click	
the	tab	again	to	stop	the	recording.	
	
	

18. Wait	for	your	application	to	process	your	input	and	listen	to	the	translated	output.	

	 	

Prepare for the OK Watson application

In this section, you will be re-creating a bot application named “OK Watson” by using the Watson Assistant service. For more
information on the Watson chat bot, see the Conversation Service Tutorial.

You will import a prebuilt conversation from the OK
Watson starter kit.

1. Open	the	OK	Watson	starter	kit	page	on	GitHub.	
	
	
	
	
	
	
	
	
	
	
	
	
	

2. Click	the	ok-watson-starter-conversation.json	link	on	the	site.	
	

	
	

	3. Right-click	Raw	and	select	Save	Link	As.	
	 	
	 	
	 	
	 	
	 	

	
4. Save	the	file	with	a	.json	file	extension.	

	
	
	
	

5. Find	the	file	on	your	machine	and	open	it	to	
verify	that	the	file	has	been	downloaded	properly	
and	that	is	has	JSON	content.	
	
You	are	now	ready	to	import	the	file	into	the	
Watson	Assistant		service.	
	

	 	

6. Open	your	IBM	Cloud	page	and	select	the	Watson	Assistant	(formerly	Conversation)	service.		
	 	
	

7. Find	the	section	for	the	Conversation	tooling	and	click	Launch	tool.	Log	in	with	your	IBM	ID,	if	requested.		
	
	 	
	 	
	 	

	
8. Select	Workspaces	from	the	home	page	 then	click	the	Import	icon.	 	

	 	 	
9. Select	your	file.	Under	Import,	select	Everything	

(Intents,	Entities,	and	Dialog),	and	then	click	Import.	
This	action	will	create	your	workspace.	
	
	
	
	
	
	
	

10. Once	the	import	has	been	successful,	you	be	shown	your	Conversation.	For	now,	click	on	the	window	icon	to	
go	back	to	the	list	of	workspaces.	
	
	
	
	
	
	
	

11. Click	the	Menu	icon	(three	dots),	and	then	click	View	details.		

This	view	shows	a	summary	of	the	workspace	and	the	workspace	ID.	You	need	this	ID	for	
your	Node-RED	flow	to	be	able	to	use	the	Watson	Assistant		service.			

	

12. To	see	the	intents,	entities,	and	dialog	nodes	that	were	loaded,	click	the	Return	
button.	Then	click	Get	Started	to	see	your	workspace.		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	 	

Add link nodes to aid the view the logic of the application flow

1. Return	to	the	home	page	for	the	OK	Watson	Starter	Kit.	
	

2. Click	the	link	to	the	JSON	flow.	 	
	

3. Click	Raw	to	view	all	the	JSON	code.	 	
	 	

4. Select	all	of	the	code	and	copy	it	to	the	clipboard.	You	will	use	this	in	a	later	step.		The	flow	that	you	will	import	uses	
link	nodes	to	make	it	easier	to	view	the	logic	of	the	application	flow.		
	

5. To	see	how	these	link	nodes	work,	open	your	Node-RED	instance	in	the	flow	editor,	and	open	the	first	flow	that	you	
created	in	this	course.	(Use	Flow	1,	if	you	don’t	have	a	sample	flow;	use	Flow	2,	if	a	sample	flow	was	automatically	
imported	when	you	created	the	Node-RED	instance.)		
	

6. Provide	a	name	for	this	tab	(Flow	1	or	Flow	2),	such	as	Hello World,	then	click	Done.	
	

	
	

7. Drag	and	drop	an	inject	node,	two	output	link	nodes	and	an	input	link	node	onto	the	canvas.		
	

8. Select	and	delete	the	link	between	the	original	Inject	node	and	the	language	translator	node.	
	

	
9. Double-click	the	second	inject	node	and	name	it	something	like	

Goodbye Inject.	Set	the	Payload	field	to	a	suitable	string,	such	
as	It's time for me to go now.	Then,	click	Done.	
	
	
	
	
	
	

10. Wire	the	nodes	together	so	that	the	original	Inject	
node,	the	language	translator	node,	and	the	
Goodbye	Inject	node	are	wired	to	separate	link	
nodes.		
	
	
	

11. Double-click	the	link	that	is	connected	to	the	original	Inject	
node.		Name	the	link	out	node	to	something	like	Hello
String,	then	click	Done.	
	
	
	
	
	
	
	

12. Repeat	the	previous	step	for	the	link	node	that’s	connected	
from	the	Goodbye	Inject	node.	Name	the	link	node	to	
something	like	Goodbye String,	then	click	Done.	
	
	
	
	
	
	

13. Double-click	the	link	node	that’s	wired	to	the	language	translator	node.	 		
Name	the	link	something	like	Translate Input,	select	the	
check	boxes	to	link	to	both	output	links,	and	then	click	Done.		
	
	
	
	
	
	
	

14. To	see	what	a	link	node	is	connected	to,	select	that	node.	For	example,	select	the	input	
link	node	connected	to	the	language	translator	node.	
	
	
	
	

15. Click	Deploy	to	save	your	changes.		Click	the	Debug	tab.	To	clear	the	list,	click	the	Trash	icon.	
	

16. Click	each	inject	node	in	turn.	 	

You should see the output in the Debug tab.

You are now ready to import the OK Watson flow.

	 	

Import the OK Watson flow

In this section, you will re-create the OK Watson application. This is a more complex flow, and you will be taking a short-cut to
create it.

1. Create	a	new	tab	and	set	the	name	of	the	tab	to	something	like	OK Watson.	Click	Done.	
The	flow	should	still	be	in	your	clipboard.	If	not,	repeat	steps	1-4	
in	the	previous	section,	“Add	link	nodes	to	more	easily	view	the	
logic	of	the	application	flow.”	

You are now ready to import the flow into the flow editor.

2. Click	the	flow	editor	Menu,	click	Import	>	Clipboard,	then	paste	your	flow	into	the	text	box	and	click	Import.	
	
	

You now have the OK Watson flow in your flow editor.

3. You	can	use	the	Zoom	buttons	to	show	the	whole	flow.	
	
	
	
	
	
You	have	the	OK	
Watson	flow	in	
your	editor	

	
	
	
	
	
	
	

4. Focus	on	the	nodes	in	the	“test	txt	in”	grouping.	These	nodes	provide	sample	input	
strings.	 	
	 	
	 	
	 	

5. Click	the	link	node.	Note	that	the	text	is	passed	directly	to	the	tone	analyzer	node.	

	
	

	 	

6. Focus	on	the	“speech	in”	the	set	of	nodes.	This	group	uses	the	
microphone	and	speech	to	text	nodes.	 	
	 	
	 	
	 	
	 	
	

7. Double-click	the	speech	to	text	node	to	set	a	spoken	language	and	ensure	you	use	
BroadbandModel	for	Quality.		Then,	click	Done.	
	
	

	
	
	
	
	
	

8. Select	the	link	node.	Note	that	the	speech	to	text	input	node	also	goes	to	the	tone	analyzer	node.	

	
	

9. In	the	tone	analyzer	group	of	nodes,	double-click	the	tone	analyzer	node.	

	
	

10. Configure	the	Tone	Analyzer	node	as	follows:	

		Then	click	Done.	

	 	

11. Double-click	the	add	emotion	to	context	function	node	to	view	the	code.	 	

The	script	in	this	function	node	determines	the	highest	tone	score	
and	sets	it	to	msg	fields	that	the	conversation	node	will	look	for.	

	

	
	
	
	
Click	Cancel	to	close.	

12. Click	the	link	node.	Note	that	the	output	from	the	tone	analyzer	links	to	the	
conversation	node.	
	
	

	
	

13. Focus	on	the	conversation	group	of	nodes.	

	
	

14. To	configure	the	conversation	node,	find	your	conversation	
workspace	ID	that	you	created	in	“5.	Prepare	for	the	OK	
Watson	application”	>	step	10.	Then,	go	to	IBM	Cloud.		

1. Find	your	instance	of	the	Watson	Assistant		service	
and	launch	the	tool.		

2. Click	the	service	and	launch	the	tooling.		
3. Find	your	workspace.	
4. Click	Options	and	View	details	to	see	your	

workspace	ID.		
5. Click	the	Copy	button	to	copy	the	ID	to	the	

clipboard.				 	
	
	

15. Go	back	to	your	Node-RED	flow	editor.	Double-click	the	assistant	
node.	Paste	in	your	workspace	ID.	Select	the	Save	context	check	box	
to	ensure	that	the	node	remembers	the	conversation	context.		

If you do not select Save context, then it is the responsibility of your
application flow to pass in the context object that is associated with
the context. Setting this option to save the context enables the code in
the node to do this control for you.

Click Done.

16. Edit	the	text	to	speech	node.	Set	the	output	language.	
	
Click	Done.	For	now,	do	not	configure	the	twitter	node.	
	
Click	Deploy	to	deploy	your	flow.	

	 	

17. Try	out	your	application	by	using	either	the	microphone	or	any	of	the	sample	test	texts.	
	
	 	
	 	
	

	
	
	
	
	
	
	
	
	
	
	
	
You should now have two running applications that use multiple Watson services:	

• Speech to Text
• Translation
• Tone Analyzer
• Watson Assistant
• Text to Speech

	

