Intro to z/OS: Part 1

Stephen Warren
Senior Technical Staff Member
Client Architect, IBM Worldwide Client Experience Center

November 2019
Session AF
Introduction

• This **class will cover** (at the 50,000 foot level) many **different areas** (but not all) of **z/OS**
Introduction

• This class will cover (at the 50,000 foot level) many different areas (but not all) of z/OS

• Don’t be overwhelmed. There is a ton of material here. The purpose of this session is to acquaint you with some of the major concepts of z/OS
Agenda

Part 1: Why Z Matters
- Hardware/LPAR
- z/OS Components
- Software Stack
- App Dev, App Exec and Mgmt Envs
- DASD
- Data Sets / Allocation
- TSO/E
- ISPF
- z/OS UNIX/ISHELL/OMVS/Remote
- Address Spaces & Modes
- Storage & DAT

Part 2 – Next
- Batch Processing/JES/JCL
- SDSF
- Job Flow
- System Log
- VTOC & Catalogs
- PDS & PDSE
- SMS
- IPL
- Sysplex/GDPS
- Serialization
- Managing Workloads
Why Z Matters?
Why Z Matters

Utilities Retail
Government Financial
Travel Healthcare
Telecoms Automotive
Weather
Why Z Matters

92 of the top 100 worldwide banks run on Z
10 out of 10 of the world’s largest insurers
Why Z Matters

>90% of the US’s largest retailers
Why Z Matters

>90% of the US’s largest airlines
Why Z Matters

1.3 million
CICS transactions every second of every day

In comparison, there are 68,542 Google searches every second globally
Why Z Matters

The average cost of a security breach in the US is estimated at $11 million

IBM Z has the highest server security rating in the industry

Security is built into every level of the mainframe’s structure, including the processor, operating system, communications, storage and applications
Why Z Matters

Mainframes process **30 billion** business transactions per day

Mainframes process **1.3 million** CICS transactions. Every second. Every day.

Mainframes enable **$6 trillion** in card payments annually

80 percent of the world’s corporate data originates on mainframes

91 percent of CIOs said new customer-facing apps are accessing the mainframe
Naming of OS
z/OS Lineage

• At the beginning there was:
 • OS/360 (1966)
 - Configuration options PCP, MFT and MVT
 • OS/VS2 R1 (~1972)
 - Retroactively renamed to SVS
 • OS/VS2 R2 (~1974)
 - Also called MVS
 • MVS/370 (~1977)
 - MVS/SP V1
 - Optionally DFDS and DFEF
 • MVS/XA (1983)
 - MVS/SP V2 or V3 and MVS/DFP
 • MVS/ESA (~1990)
 - MVS/SP V4 or V5
 - Either MVS/DFP or DFSMS/MVS
 • OS/390 (1996)
 • z/OS (2001)

Since 2001 the name has remained z/OS

This is the longest that it has been called one name!
Check Your knowledge
Check your Knowledge

• What do you think the “Z” stand for in z/OS?
Check your Knowledge

• What do you think the “Z” stand for in z/OS?
 • Zero downtime
Hardware Context of z/OS
IBM Z Server – the IBM z15
IBM Z Server – Support Element

Bottom layer is the *Support Element* (SE)

Provides the **human interface** (technicians and system programmers) to the CPC
Next layer is the **hardware** and **microcode** (a.k.a. **Firmware**, **BIOS**)

- **CP, Memory, I/O**
- **Support Element (SE)**
Next layer is the hardware and microcode (a.k.a. Firmware)

Software that is built into the hardware and is not accessible by the user
IBM Z Server – H/W, Microcode

Next layer is the **hardware** and **microcode** (a.k.a. **Firmware**)

Up to 190 processors (CPs a.k.a. CPUs) are supported

64GB to 40TB of memory is supported
Next layer is Processor Resource/Systems Manager (PR/SM)

A **hypervisor** that manages virtual machines (enables the logical partitioning function (coming up next) of the CPC)

Exists in the **firmware** (software embedded in hardware and can be **updated**) of the CPC

IBM Z Server – PR/SM™

PR/SM™

CP, Memory, I/O

Support Element (SE)
IBM Z Server – Single LPAR

Customer specifies the number of **Logical Partitions** (LPARs)

Think of an LPAR as equivalent to a separate CPC (i.e., a virtual machine)
IBM Z Server – Multiple LPARs

- Up to 85 LPARs can be defined
- Each LPAR can be allocated different amounts of resources (up to 16TB memory)
IBM Z Hardware and z/OS

z/OS (a.k.a. Multiple Virtual Storage - MVS)

Where we will be spending our time
z/OS Elements, Features, and Components
z/OS Concepts – Elements, Features, Components

• z/OS is a collection of elements
 • Each element consists of a collection of modules (called components)

Examples:
IOS, RSM, GRS, Contents, Allocation, Consoles, NIP, Scheduler, SMF, BCPii, Logger
z/OS Concepts – Elements, Features, Components

• z/OS is a **collection of elements**
 • Each element consists of a **collection of modules** (called **components**)
 • **Base elements** are **always included** in z/OS
 • **BCP** *(Base Control Program)*
 • **DFSMSdfp** *(Data Facility Storage Management Subsystem)*
 • Deliver **essential** operating **system functions**

Other Base Elements:
Communication Server, z/OSMF, HLASM, TSO, ISPF, JES2, Metal C Runtime Library
z/OS Concepts – Elements, Features, Components

• z/OS is a collection of elements
 • Each element consists of a collection of modules
 • Base elements are always included in z/OS
 • BCP (Base Control Program)
 • DFSMSdfp (Data Facility Storage Management Subsystem)
 • Deliver essential operating system functions

• Optional features installed in addition to base elements
 • Requested separately from base elements
 • Can be priced or free

Optional Features
Examples:
Security Server, SDSF, XL C/C++, RMF, JES3, DFSMShsm, DFSMSdss
Software Stack
IBM z/OS Software Stack

z/OS®

Applications
Middleware
Operating System

Provides critical set of system services made possible by the z/Architecture® and firmware
IBM z/OS Software Stack

- Applications
- Middleware
- Operating System

Software that is neither operating system code nor an end-user application
IBM z/OS Software Stack

Applications

Middleware

Db2®, Data Base 2
CICS®, Customer Information Control System
IMS™, Information Management System
WAS, WebSphere® Application Server
IBM MQ, IBM Message Queuing
SAP®, Systems, Applications and Products in Data Processing
TSO/E, Time Sharing Option/Extensions

SAP is the registered trademark of SAP SE in Germany and in several other countries.
IBM z/OS Software Stack

- Applications
- Middleware
- Operating System

Provide **end-user interface** to product solutions

ISPF Interactive System Productivity Facility
SA z/OS IBM Tivoli® System Automation for z/OS
Application Development Environments, Application Execution Environments and z/OS Management Environments
z/OS supports many *programming languages* as well as modern *IDEs* and *environments*
Application Development Env

z/OS supports many programming languages as well as modern IDEs and environments

- Assembler
- COBOL
- C/C++
- PL/I
- Fortran
- REXX
- JAVA™
- Python
- Node.js
- Scala
Legacy interactive interface
Application Development Env

Legacy interactive interface

Integrated Development Environment (IDE)
Application Development Env

Legacy interactive interface

Integrated Development Environment (IDE)

Other Modern Application Development Tools
Application Development Env
Application Execution Env

Traditional z/OS application environments, including middleware

Java Virtual Machine application environment

z/OS UNIX application environment

z/OS Container Extensions application environment (new in z/OS V2R4)
Management Environments

z/OS Management Facility (z/OSMF) provides modern interface to help manage your z/OS systems.
DASD
IBM Speak – DASD

• **DASD** – *Direct Access Storage Device*
 • Think “Hard Drive”
IBM Speak – DASD

• **DASD** – *Direct Access Storage Device*
 • Think “Hard Drive”
 • a.k.a. DASD **Volume**
 • Volume needs **a label**
 • *Volume Serial Number* (**VOLSER**)
 • 1 to 6 characters
Data Sets
IBM Speak – Data Set

• **Data set**
 • Think “**File**”
 • Contains data in different structured formats
 • **Need to choose the format of data set and reserve space (allocate dataset) prior to using for the first time**
 • Resides on DASD, Tape
 • z/OS has types of data sets
 • Legacy Data set
 • Unix file

IBM prefers the spelling “data set” to “dataset”
IBM Speak – Data Set

Data in a data set
IBM Speak – Data Set

Broken up into records
IBM Speak – Data Set

LRECL (Logical Record Length) = 80
Number of bytes in each record
IBM Speak – Data Set

RECFM (Record Format) = F (Fixed)
All records are the same size
IBM Speak – Data Set

RECFM (Record Format) = FB (Fixed Block)
Records grouped into blocks

BLKSIZE (Block Size) = 240

3 Records * LRECL = BLKSIZE
IBM Speak – Data Set

RECFM = FB **BLKSIZE** = 240 **LRECL** = 80

80	80	80	80	80	80	80

Broken up into variable sized records

LRECL (Logical Record Length) = 80

Maximum number of **bytes in a record**
IBM Speak – Data Set

RECFM = FB BLKSIZE=240 LRECL=80

80 80 80 80 80 80 80

40 80 50 10 70 80

RECFM (Record Format) = VB (Variable Block)
Records grouped into blocks

BLKSIZE (Block Size) = 174

Find largest block: Total LRECL values + 4 byte descriptor = BLKSIZE
IBM Speak – Data Set

<table>
<thead>
<tr>
<th>Record Format (RECFM) = Fixed Block (FB); Block Size (BLKSIZE)=240; Logical Record Length (LRECL)=80</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Record Format (RECFM) = Variable Block (VB); Block Size (BLKSIZE)=174; Logical Record Length (LRECL)=80</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
</tr>
</tbody>
</table>

Block size = number of records to be read as a single I/O operation

Choose the appropriate settings for the type of data
One other data set attribute: **DSORG** *(Data Set Organization)*
IBM Speak – Data Set

DSORG=PS (Physically Sequential)

Data

Editing the data set gives you all the data in the data set
IBM Speak – Data Set

DSORG=PS (Physically Sequential)

- Data

DSORG=PO (Partitioned)

- Directory
- Member 1 Data
- Member 2 Data
- Member 3 Data

a.k.a. **PDS (Partitioned Data Set)**

or **PDSE (Partitioned Data Set Extended)**
IBM Speak – Data Set

DSORG=PO (Partitioned)

The PDS contains a directory to locate the members
The Naming of Data Sets
IBM Speak – Data Set Name

• *Data set name* (DSN or DSName)
 • Think “File Name”
IBM Speak – Data Set Name

- *Data set name* (DSN or DSName)
 - Think “File Name”
 - 1 to 22 segments
 - segments separated by a period
 - each segment limited to 8 characters

FRED.ASSEMBLE.SOURCE
IBM Speak – Data Set Name

- **Data set name** (DSN or DSName)
 - Think “File Name”
 - 1 to 22 segments
 - segments separated by a period
 - each segment limited to 8 characters
 - Up to **44 characters** (includes periods)
- **High-level qualifier** (HLQ) is typically your **userid**
Data Set Allocation
IBM Speak – Data Set Allocation

• Data set allocation
 • Think “Create Space” for a data set on disk
IBM Speak – Data Set Allocation

- **Data set allocation**
 - Think “Create Space” for a data set on disk
 - Need:
 - Data set name
 - **VOLSER** (i.e., the DASD volume) where the space should be allocated
 - Data set attributes (Size, RECFM, LRECL, BLKSZE, DSORG)
Check Your knowledge
Check your knowledge

- What is a VOLSER?
Check your knowledge

• What is a VOLSER? -
 • Volume Serial Number, name of your disk drive
Check your knowledge

• What is a VOLSER? -
 • Volume Serial Number, name of your disk drive

• What is the maximum length of a z/OS data set name (including periods)?
Check your knowledge

• What is a VOLSER? -
 • Volume Serial Number, name of your disk drive

• What is the maximum length of a z/OS data set name (including periods)?
 • 44 Characters
TSO/E
Interacting with z/OS – TSO

• **End users** (sometimes tens of thousands of them) use the system
Interacting with z/OS – TSO

- **End users** (sometimes tens of thousands of them) use the system

- **TSO/E** (*Time Sharing Option/Extensions*) allows **users to log on** and interactively **share resources**
 - Supports **limited set** of basic **commands**
 - Sometimes called using TSO in its “**native mode**”
You provide your **userid** and **password**

Enter LOGON parameters below:

Userid ===> BIBOLET
Password ===>
Procedure ===> PROC01
Acct Nmbr ===> 1234567
Size ===> 2096128
Perform ===>
Command ===> ex (rablog)

Enter an 'S' before each option desired below:

- Nomail
- Nonotice
S - Reconnect
- OIDcard

PF1/PF13 ===> Help
PF3/PF15 ===> Logoff
PA1 ===> Attention
PA2 ===> Reshow
READY indicates TSO will accept commands.
ISPF
Because TSO/E native mode supports limited functions, most users go right to ISPF.
Interacting with z/OS – ISPF

- **ISPF** *(Interactive System Productivity Facility)*
 - Full *panel application*
 - Panels are *hierarchical*
Interacting with z/OS – ISPF

• **ISPF** (Interactive System Productivity Facility)
 • Full panel application
 • Panels are hierarchical
 • Navigated via keyboard
 • F7 and F8 scroll up (or backwards) and **down** (or forwards)
 • **Enter** (*not right-ctrl*) moves cursor to next input field
 • **Home** moves cursor to first input field
 • **ISPF use of Function Keys** – z/OS ISPF User’s Guide Vol I

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>HELP</td>
</tr>
<tr>
<td>F2</td>
<td>SPLIT</td>
</tr>
<tr>
<td>F3</td>
<td>END</td>
</tr>
<tr>
<td>F4</td>
<td>RETURN</td>
</tr>
<tr>
<td>F5</td>
<td>RFIND</td>
</tr>
<tr>
<td>F6</td>
<td>RCHANGE</td>
</tr>
<tr>
<td>F7</td>
<td>UP</td>
</tr>
<tr>
<td>F8</td>
<td>DOWN</td>
</tr>
<tr>
<td>F9</td>
<td>SWAP</td>
</tr>
<tr>
<td>F10</td>
<td>LEFT</td>
</tr>
<tr>
<td>F11</td>
<td>RIGHT</td>
</tr>
<tr>
<td>F12</td>
<td>RETRIEVE</td>
</tr>
</tbody>
</table>

Link to ISPF publication
Interacting with z/OS – ISPF

• **ISPF** (*Interactive System Productivity Facility*)
 • Full **panel application**
 • Panels are **hierarchical**
 • **Navigated via keyboard**
 • F7 and F8 scroll backward and **forward**
 • **Enter** (*not right-ctrl*) moves cursor to next input field
 • **Home** moves cursor to first input field
 • **ISPF use of Function Keys** – z/OS ISPF User’s Guide Vol I
 • Provides text **editor** and **browser**
Interacting with z/OS – ISPF

- **ISPF** *(Interactive System Productivity Facility)*
 - Full **panel application**
 - Panels are **hierarchical**
 - **Navigated via keyboard**
 - **F7** and **F8** scroll **backward** and **forward**
 - **Enter** *(not right-ctrl)* moves cursor to next input field
 - **Home** moves cursor to first input field
 - **ISPF use of Function Keys**
 - Provides text **editor** and **browser**
 - **Data set utilities**
 - Allocation
 - Deletion
 - Locating and Listing
 - etc.
Interacting with z/OS – ISPF

Menu | RefList | RefMode | Utilities | Help

Option ===>

=3.4 takes us to the Data Set List Utility

Data Set List Utility

More: +

blank Display data set list
V Display VTOC information
P Print data set list
PV Print VTOC information

Enter one or both of the parameters below:
Dsname Level... BIBOLET.*.SOURCE
Volume serial...

Data set list options
Initial View
1. Volume
2. Space
3. Attrib
4. Total

Enter "/" to select
/ Confirm Data Set Delete
/ Confirm Member Delete
/ Include Additional Qualifiers
/ Display Catalog Name
/ Display Total Tracks
Prefix Dsname Level

When the data set list is displayed, enter either:
"/" on the data set list command field for the command prompt pop-up,
an ISPF line command, the name of a TSO command, CLIST, or REXX exec, or
Specify the data set name (or use wildcards) that you want to display and press Enter.
Data sets with BIBOLET as an HLQ and SOURCE as the 3rd qualifier are displayed.
Interacting with z/OS – ISPF

Side note:
To list the available commands, enter a slash “/”.
Enter the **number** of the function you desire
You **write** your program!
z/OS UNIX
Interacting with z/OS – UNIX

• z/OS UNIX a certified UNIX operating system by the Open Software Foundation
• z/OS UNIX® provides another interactive way to access z/OS
• Before we examine some UNIX functions, we need to understand the z/OS UNIX file system
 • In particular, the zFS (zSeries File System)
Interacting with z/OS – UNIX zFS

A hierarchical file system structure
Interacting with z/OS – UNIX zFS

- **Path name** identifies a file
 - **Consists of directory** names and a **file** name
Interacting with z/OS – UNIX zFS

• **Path name** identifies a file
 • **Consists of directory** names and a **file** name

• Up to **1023** characters
Path name identifies a file

- Consists of directory names and a file name

- Up to 1023 characters

- Directories and file name **separated by** a forward-slash (/)

 `/dir1/dir2/dir3/MyFile`
Interacting with z/OS – UNIX zFS

- **Path name** identifies a file
 - Consists of **directory** names and a **file** name
 - Up to **1023** characters
 - Directories and file name **separated by** a forward-slash (**/**)
 `/dir1/di2/dir3/MyFile`
- Names are **case sensitive**
Interacting with z/OS – UNIX zFS

• **Path name** identifies a file
 • **Consists of directory** names and a **file** name

• Up to **1023** characters

• Directories and file name **separated by** a forward-slash (**/**)
 /dir1/dir2/dir3/MyFile

• Names **are case sensitive**

• All files are **sequential files**
Interacting with z/OS – UNIX

• z/OS UNIX provides three main environments
 • ISHELL
 • ISPF panel interface to z/OS UNIX System Services
 • Good for users familiar with TSO and ISPF
Interacting with z/OS – UNIX

• z/OS UNIX provides **three main environments**
 • **ISHELL**
 • ISPF panel interface to z/OS UNIX System Services
 • Good for users familiar with TSO and ISPF

 • **OMVS**
 • The z/OS UNIX *shell*
 • Users of **current UNIX systems** find the z/OS UNIX *shell environment familiar*
Interacting with z/OS – UNIX

• z/OS UNIX provides **three main environments**
 • **ISHELL**
 • ISPF panel interface to z/OS UNIX System Services
 • Good for users familiar with TSO and ISPF
 • **OMVS**
 • The z/OS UNIX shell
 • Users of current UNIX systems find the z/OS UNIX shell environment familiar

• **Remote UNIX interfaces**
 • z/OS UNIX can be accessed thru standard UNIX interfaces remotely
 • **Telnet, SSH, NFS**
ISHELL
Entering **ISHELL** from the TSO **Ready prompt** (TSO native mode) displays this panel
Interacting with z/OS – ISHELL

Enter a pathname and do one of these:

- Press Enter.
- Select an action bar choice.
- Specify an action code or command on the command line.

Return to this panel to work with a different pathname.

EUID=175

Press Enter to get a list of files

Command ===>
Interacting with z/OS – ISHELL

This **panel is tailorable** so your data may be displayed differently.
Interacting with z/OS – ISHELL

EDIT /u/bibolet/assemble/source/helowrld

Command ==> Scroll ==> PAGE

****** **************************** Top of Data ****************************
==MSG> -Warning- The UNDO command is not available until you change your edit profile using the command RECOVERY ON.

****** **************************** Bottom of Data ****************************
OMVS
Interacting with z/OS – OMVS

• **OMVS** is the command to invoke the z/OS UNIX shell

• **Specify:**
 • At the TSO **READY** prompt
 • From the ISPF **Command Shell** (option 6)
 • From an ISPF **panel input field**
Interacting with z/OS – OMVS

IBM
Licensed Material - Property of IBM
5650-ZOS Copyright IBM Corp. 1993, 2015
(C) Copyright Software Development Group, University of Waterloo, 1989.

U.S. Government Users Restricted Rights -
Use, duplication or disclosure restricted by
GSA ADP Schedule Contract with IBM Corp.

IBM is a registered trademark of the IBM Corp.

you have mail in /usr/mail/BIBOLET.
$

====>

ESC=© 1=Help 2=SubCmd 3=HlpRetr 4=Top 5=Bottom 6=TSO
7=BackScr 8=Scroll 9=NextSess 10=Refresh 11=FwdRetr 12=Retrieve

Opening screen

INPUT
We use the `cd` command to change our working directory.
Interacting with z/OS – OMVS

<table>
<thead>
<tr>
<th>Mode</th>
<th>User</th>
<th>Group</th>
<th>Size</th>
<th>Date</th>
<th>Time</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>drwxr-xr-x</td>
<td>24</td>
<td>BIBOLET</td>
<td>DEPTD60</td>
<td>8192 Jan 23 10:36</td>
<td>HBB7780</td>
<td></td>
</tr>
<tr>
<td>drwxr-xr-x</td>
<td>1</td>
<td>BIBOLET</td>
<td>DEPTD60</td>
<td>42 Mar 6</td>
<td>2015</td>
<td>LOGFILE</td>
</tr>
<tr>
<td>drwx------</td>
<td>3</td>
<td>BIBOLET</td>
<td>DEPTD60</td>
<td>8192 Feb 23 14:44</td>
<td>assemble</td>
<td></td>
</tr>
<tr>
<td>drwxr-xr-x</td>
<td>2</td>
<td>BIBOLET</td>
<td>DEPTD60</td>
<td>352 Feb 4</td>
<td>2011</td>
<td>cmvclogdir</td>
</tr>
<tr>
<td>-rw-rw-rw-</td>
<td>1</td>
<td>TCP</td>
<td>DEPTD60</td>
<td>1240 Mar 22</td>
<td>2016</td>
<td>dead.letter</td>
</tr>
<tr>
<td>drwxr-xr-x</td>
<td>1</td>
<td>BIBOLET</td>
<td>DEPTD60</td>
<td>0 Oct 15</td>
<td>2014</td>
<td>ezc.diag.err</td>
</tr>
<tr>
<td>drwxr-xr-x</td>
<td>1</td>
<td>BIBOLET</td>
<td>DEPTD60</td>
<td>647 Oct 15</td>
<td>2014</td>
<td>ezc.diag.out</td>
</tr>
<tr>
<td>drwxr-xr-x</td>
<td>1</td>
<td>BIBOLET</td>
<td>DEPTD60</td>
<td>49 May 6</td>
<td>2015</td>
<td>hbb77b0.extract</td>
</tr>
<tr>
<td>drwxr-xr-x</td>
<td>2</td>
<td>BIBOLET</td>
<td>DEPTD60</td>
<td>320 May 23</td>
<td>2008</td>
<td>jcljobs</td>
</tr>
<tr>
<td>drwxr-xr-x</td>
<td>2</td>
<td>BIBOLET</td>
<td>DEPTD60</td>
<td>256 Mar 1</td>
<td>2010</td>
<td>new</td>
</tr>
<tr>
<td>drwxr-xr-x</td>
<td>1</td>
<td>BIBOLET</td>
<td>DEPTD60</td>
<td>0 May 6</td>
<td>2015</td>
<td>nohup.out</td>
</tr>
<tr>
<td>drwxr-xr-x</td>
<td>1</td>
<td>BIBOLET</td>
<td>DEPTD60</td>
<td>16760 Dec 7</td>
<td>2009</td>
<td>ted</td>
</tr>
<tr>
<td>drwxr-xr-x</td>
<td>1</td>
<td>BIBOLET</td>
<td>DEPTD60</td>
<td>116617 Mar 1</td>
<td>1993</td>
<td></td>
</tr>
<tr>
<td>drwxr-xr-x</td>
<td>1</td>
<td>BIBOLET</td>
<td>DEPTD60</td>
<td>117494 Feb 18</td>
<td>1993</td>
<td></td>
</tr>
<tr>
<td>drwxr-xr-x</td>
<td>1</td>
<td>BIBOLET</td>
<td>DEPTD60</td>
<td>117494 Feb 18</td>
<td>1993</td>
<td></td>
</tr>
<tr>
<td>drwxr-xr-x</td>
<td>1</td>
<td>BIBOLET</td>
<td>DEPTD60</td>
<td>117087 Feb 19</td>
<td>1993</td>
<td></td>
</tr>
<tr>
<td>drwxr-xr-x</td>
<td>1</td>
<td>BIBOLET</td>
<td>DEPTD60</td>
<td>0 Feb 19</td>
<td>1993</td>
<td></td>
</tr>
<tr>
<td>drwxr-xr-x</td>
<td>2</td>
<td>BIBOLET</td>
<td>DEPTD60</td>
<td>8 Oct 19</td>
<td>1993</td>
<td></td>
</tr>
</tbody>
</table>

$ cd assemble/source

$ ls -al

Now **list the files in our working directory**
Interacting with z/OS – OMVS

Here we have our **helloworld** file

```
-rwxr-xr-x 1 BIBOLET DEPTD60 0 Oct 15 2014 ezc.diag.err
-rwxr-xr-x 1 BIBOLET DEPTD60 647 Oct 15 2014 ezc.diag.out
-rwxr-xr-x 1 BIBOLET DEPTD60 49 May 6 2015 hbb77b0.extract
-drwxr-xr-x 2 BIBOLET DEPTD60 320 May 23 2008 jcljobs
-drwxr-xr-x 2 BIBOLET DEPTD60 256 Mar 1 2010 new
-rwxr-xr-x 1 BIBOLET DEPTD60 6 2015 nohup.out
-rwxr-xr-x 1 BIBOLET DEPTD60 7 2009 ted
-rwxr-xr-x 1 BIBOLET DEPTD60 1 2010 ted.ahqhs
-rwxr-xr-x 1 BIBOLET DEPTD60 18 2010 ted.big
-rwxr-xr-x 1 BIBOLET DEPTD60 18 2010 ted.biger
-rwxr-xr-x 1 BIBOLET DEPTD60 19 2010 ted.ipcs
-rwxr-xr-x 1 BIBOLET DEPTD60 18 2010 ted.stuff
-drwxr-xr-x 2 BIBOLET DEPTD60 2 22 Mar 2 2010 ted1

$ cd assemble/source
$ ls -al
  total 48
  drwx------- 2 BIBOLET DEPTD60 8192 Feb 23 15:05 ...
  drwx------- 3 BIBOLET DEPTD60 8192 Feb 23 14:44 ...
  -rwx------- 1 BIBOLET DEPTD60 1892 Feb 23 14:54 helloworld
$
```

ESC=c 1=Help 2=SubCmd 3=HlpRetrn 4=Top 5=Bottom 6=TSO
7=BackScr 8=Scroll 9=NextSess 10=Refresh 11=FwdRetr 12=Retrieve
Interacting with z/OS – OMVS

We use the `oedit` command to edit the file

```bash
$ cd assemble/source
$ ls -al
total 48
drwx------ 2 BIBOLET DEPTD60 1892 Feb 23 15:09 .
drwx------ 3 BIBOLET DEPTD60 1892 Feb 23 14:44 ..
-rwx------ 1 BIBOLET DEPTD60 1892 Feb 23 14:54 helowrld
$
```

```bash
===> oedit helowrld
```

ESC=c 1=Help 2=SubCmd 3=HlpRetrn 4=Top 5=Bottom 6=TSO
7=BackScr 8=Scroll 9=NextSess 10=Refresh 11=FwdRetr 12=Retrieve
Interacting with z/OS – OMVS

```plaintext
0000001 Title 'Hello World Program For The Assembler Class'
0000002 HeloWrld AMODE 31                Addressing mode is 31-bit
0000003 HeloWrld RMODE 31                Residency mode is 31-bit
0000004 HeloWrld CSECT ,
0000005   SAVE (14,12)                 Save caller's registers
0000006   BASR R12,0                   Obtain addressability address
0000007   USING *,R12                   Establish addressability
0000008
0000009***********************************************************************
0000010 *       Chain our savearea to the caller's savearea
0000011***********************************************************************
0000012
0000013   LA R2,SaveArea               Get address of our savearea
0000014   ST R2,8,(R13)                 Make caller SA point to our SA
0000015   ST R13,SaveArea+4            Make our SA point to our caller's SA
0000016   LR R13,R2                     Setup SA to be used by code
0000017
0000018
0000019
```
Remote UNIX Interfaces
Interacting with z/OS - Telnet

- Remote command execution
- Connection may be encrypted
- Automatically converts EBCDIC on the mainframe side to ASCII on the user side
- Telnet client is needed
- Userid/password of valid z/OS userid required
Interacting with z/OS – Telnet

PuTTY Configuration

- Basic options for your PuTTY session
- Specify the destination you want to connect to Name or IP address: hostname.ibm.com Port: 23
- Connection type:
 - Raw
 - Telnet
 - Plogin
 - SSH
 - Serial
- Load, save or delete a stored session
- Saved Sessions
- Close window on exit:
 - Always
 - Never
 - Only on clean exit

IBM's internal systems must only be used for conducting IBM's business or for purposes authorized by IBM management. Use is subject to audit at any time by IBM management.

U.S. Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

IBM is a registered trademark of the IBM Corp.

leaving .setup_dev
/u/swarden:
Interacting with z/OS – SSH

• Remote command execution
• Connection is encrypted
• Automatically converts EBCDIC on the mainframe side to ASCII on the user side
• SSH client is needed
• Public/private encryption key pair needs to be generated
 • No userid/password needs to be specified
 • Public key needs to be stored on z/OS
Interacting with z/OS – SSH
Interacting with z/OS – SSH

192.86.32.159 - PuTTY

login as: z99999
z99999@192.86.32.159's password:
z99999:/z/z99999 > ls
zfile
z99999:/z/z99999 > cat zfile
Interacting with z/OS – NFS

• Network file system
 • Acts as a file server to remote systems
• Client sees data sets or files as if they are local resources
• Access to both traditional z/OS data sets and z/OS UNIX files
• Connection may be encrypted
• Automatically converts EBCDIC on the mainframe side to ASCII on the user side
• NFS client is needed
• mvslogin command required to logon to z/OS
• mount command used to make a connection between a drive letter of local system and z/OS data sets or z/OS UNIX directories
Interacting with z/OS – NFS

c:\znfs-client-utils> mvslogin mvshost smith
GFSA968I UNIX uid=502/gid=1000 for user JSmith obtained from local passwd file.
Password required
GFSA973A Enter MVS password for SMITH: ********
GFSA955I SMITH logged in ok.

c:\znfs-client-utils> mount \mvshost\mvs\smith J:
J: is now successfully connected to \mvshost\mvs\smith
The command completed successfully.

c:\znfs-client-utils> J:
j:/>
Address Spaces
z/OS is **structured** around **address spaces**
z/OS is structured around address spaces.

Address spaces are ranges of addresses in virtual storage.
z/OS Address Spaces

z/OS is structured around address spaces

Address spaces are ranges of addresses in virtual storage

Each user gets an address space containing the same range of addresses
Each user’s address space has the **same range of addresses**

0 – 16 EB (exabyte)
Each user’s address space has the same range of addresses

0 – 16 EB (exabyte)

1 EB = 1 billion gigabytes (10^{18})
z/OS Address Spaces

z/OS has given names to two addresses:

The Line
z/OS has given names to two addresses:

The Line

The Bar
Besides an address space for each user, z/OS creates address spaces (~35) for some of its internal components.
Then address spaces for **middleware** and **applications** are created.
Address spaces listed in SDSF
What makes up an Address Space?
What Makes Up an Address Space?

So you have 16 exabytes all for your use. Right?
What Makes Up an Address Space?

So you have 16 exabytes all for your use. Right?

Wrong!
What Makes Up an Address Space?

z/OS has storage **ranges** that contain **code/data** that is **common to all address spaces**

- **Prefixed Save Area (PSA)**
- **z/OS system data for the address space**
- **Shared and common data areas**
- **System code and data common to all address spaces**
- **Not available to z/OS. Used by JAVA™**

z/OS has storage ranges that contain code/data that is common to all address spaces
What Makes Up an Address Space?

- **Prefixed Save Area (PSA)**
 - System code and data common to all address spaces
 - Not available to z/OS. Used by JAVA™

- **Shared and common data areas**
 - z/OS system data for the address space

- **Private Area**
 - Available for your use
 - System code and data common to all address spaces

- **2 GB "The Bar"**

- **16 MB "The Line"**

What is left is the "**Private Area**" that is available for your use.
What Makes Up an Address Space?

But how much can your program see (i.e., address)?
Addressing Modes
Memory addresses consisted of **lower 24-bits** in a word 00FFFFFF

A word being 4 bytes

IBM 3168 vintage 1977
Addressing Modes

Memory addresses consisted of lower 24-bits in a word 00FFFFFF

Memory Addressability range:
0 – 16,777,215 bytes or 16,777,216 bytes or 16 MB
An address space size is limited to the amount of memory that can be addressed.

In 1977, an address space was limited to 16 MB.
Addressing Modes

Memory addresses consisted of **lower 31-bits** in a word

`7FFFFFFFFF`

IBM 3081
vintage 1981
Addressing Modes

Memory addresses consisted of **lower 31-bits** in a word

7FFFFFFF

Memory Addressability

range:

0 – 2,147,483,647 bytes

or

2,147,483,648 bytes

or

2 GB
An address space size is limited to the amount of memory that can be addressed.

In 1981, an address space was limited to 2 GB.
Addressing Modes

The concept of “The Line” was introduced
Addressing Modes

Programs not changed to support 31-bit addressing had to run and could only access data that was “Below the line”
Programs **changed** to support 31-bit addressing **could run** and could also **access data** that was "Above the line"
Addressing Modes

Needed a way to indicate which addressing mode the program supported.

Programs now have to specify:

AMODE 24 or AMODE 31
Since AMODE 31 programs could run (i.e., be loaded) above or below the line, a way was needed to request where the program should reside.
Programs now have to specify a residency mode: RMODE 24 or RMODE 31 so z/OS knows where to load the program.
Addressing Modes

AMODE 31
RMODE 31

2 GB

MyPgm31
Data

16 MB
"The Line"

Data
MyPgm24

AMODE 24
RMODE 24
Addressing Modes

- AMODE 31
- RMODE 24

This request is also possible

Diagram showing 2 GB, 16 MB "The Line", and 0 with Data and MyPgm31.
Addressing Modes

This request is impossible!

Branches within MyPgm24 would fail since the target location is in 31-bit storage but the address being used is a 24-bit address.

AMODE 24 RMODE 31

2 GB

16 MB “The Line”

0

MyPgm24

Data
Addressing Modes

Memory addresses consisted of all 64-bits of a doubleword

FFFFFFFF FFFFFFFF
Addressing Modes

Memory addresses consisted of **all 64-bits** of a doubleword: `FFFFFFFF FFFFFFFF`

Memory Addressability **range**: 0 – 18,446,744,073,709,551,615 bytes or 18,446,744,073,709,551,616 bytes or **16 EB**
An address space size is limited to the amount of memory that can be addressed.

In 2000, an address space is limited to 16 EB.
Addressing Modes

The concept of "The Bar" was introduced.
Addressing Modes

AMODE 64 is introduced and data can now be accessed “Above the Bar”
With z/OS V2R3 (2017), z/OS supports RMODE 64 With restrictions
With z/OS V2R3 (2017), z/OS supports RMODE 64 with restrictions.

Programs will be loaded “Above the Bar”
Check your Knowledge
Check Your Knowledge

• **(T or F)** Each user gets an address space containing the same range of Addresses?
Check Your Knowledge

• (T or F) Each user gets an address space containing the same range of Addresses? TRUE

• (T or F) A module’s RMODE value can be greater than its AMODE value.
Check Your Knowledge

• (T or F) Each user gets an address space containing the same range of Addresses? **TRUE**

• (T or F) A module’s RMODE value can be greater than its AMODE value. **FALSE**

• What is the address range for area below the bar?
Check Your Knowledge

• (T or F) Each user gets an address space containing the same range of Addresses? TRUE

• (T or F) A module’s RMODE value can be greater than its AMODE value. FALSE

• What is the address range for area below the bar? - 0 - 2GB
Check Your Knowledge

• (T or F) Each user gets an address space containing the same range of Addresses? **TRUE**

• (T or F) A module’s RMODE value can be greater than its AMODE value. **FALSE**

• What is the address range for area below the bar? - **0 - 2GB**

• To address data that resides “above the bar”, what mode is required?
Check Your Knowledge

• *(T or F)* Each user gets an address space containing the same range of Addresses? **TRUE**

• *(T or F)* A module’s RMODE value can be greater than its AMODE value. **FALSE**

• What is the address range for area below the bar? - **0 - 2GB**

• To address data that resides “above the bar”, what mode is required? – **AMODE 64**
Storage

• Programs are written to **utilize** a given amount of **memory**.
Storage

• Programs are written to utilize a given amount of memory.
• The amount of memory required by all the running tasks is usually much greater than the amount of real storage available.
• Programs are written to **utilize** a given amount of **memory**.
• The amount of **memory** required by all the running **tasks** is usually much **greater** than the amount of **real storage available**.
• This is facilitated by the use of **virtual storage**.
When a task is **active**, its memory is brought into **real storage**.
When a task is **not active**, the real **storage** that it used can be **used by another task**.
When the task is **reactivated**, its memory is **restored** from auxiliary storage.
Only the virtual storage that is being **used** needs to be in real storage.
The rest can stay in auxiliary storage, enabling the remaining real storage to be used for other programs.
Storage

- **Virtual** storage is divided into **4KB** pieces called **pages**.
Storage

- **Virtual** storage is divided into **4KB** pieces called **pages**.
- **Real** storage is divided into **4KB** pieces called **frames**.
Storage

- **Virtual** storage is divided into **4KB** pieces called **pages**.
- **Real** storage is divided into **4KB** pieces called **frames**.
- **Auxiliary** storage is divided into **4KB** pieces called **slots**.
Storage

Virtual Storage

Task A
Required Memory

Task B
Required Memory

Task C
Required Memory

Real Storage

Supervisor

Task A

Task B

Task C

Auxiliary Storage
Dynamic Address Translation (DAT)
Address Translation

• When a program is **running**, the processor must be able to **locate** its virtual **pages** in real storage.
Address Translation

• When a program is **running**, the processor must be able to **locate** its virtual **pages** in real storage.

• **Address translation** is the process that enables a processor to **convert virtual addresses into real addresses**.
A program is loaded at address 6000.
A 4KB work area is obtained at address 7000.
256 bytes of data are copied from address 7800 to 8800.
The hardware feature that makes all this possible is called the dynamic address translation (DAT).
Intro to z/OS: Part 2
Wednesday, 10:15am in Suzuka (Here)
Please submit your session feedback!

• Do it online at http://conferences.gse.org.uk/2019/feedback/af

• This session is AF
IBM Systems Worldwide Client Experience Centers

IBM Systems Worldwide Client Experience Centers maximize IBM Systems competitive advantage in the Cloud and Cognitive era by providing access to world class technical experts and infrastructure services to assist Clients with the transformation of their IT implementations.

9 Worldwide Locations (*also Infrastructure Hubs):

NEW: Co-Creation Lab; CEC Cloud; RedHat Center of Competency

For further information, please contact the Centers via email at: ccenter@us.ibm.com