
Making the Mainframe a
Millennial Magnet
Gerald Pfeiffer
Gerald.Pfeiffer@Broadcom.com

November 7th, 2019 at 11:45
Session AO

Agenda

Making the Mainframe a Millennial Magnet:
• attracting and retaining the next generation of top talent
• open IBM Z to a new generation of developers
• how can we hope to attract and retain the next generation of top

talent to work on mainframe, a technology often unknown,
ignored or misunderstood by millennials?

• empowering development teams to work across siloes and use a
common set of cross-enterprise tools across the software
delivery lifecycle, from plan, build and test to deploy, operate
and secure.

Of mainframe orgs
experienced MIPS

growth 2

84%

Of the world’s production
workloads run on

mainframes 1

68%

Of all global credit card
transactions supported by

mainframes 1

87%

Of the world’s top 100
banks rely on
mainframe 3

92

1. IBM Mainframe ushers in a new era of data protection, July 2017: https://www-03.ibm.com/press/uk/en/pressrelease/52824.wss
2. New: Arcati Mainframe Yearbook 2019: http://www.arcati.com/newyearbook19/newyearbook.pdf
3. SHARE, “Mainframe Matters: How Mainframes Keep the Financial Industry Up and Running”, April 2018:

https://www.share.org/blog/mainframe-matters-how-mainframes-keep-the-financial-industry-up-and-running

Pervasive Encryption
Real-time Machine Learning
Zowe Open Source Framework
Consumption-based Value Pricing

Has Become a Platform for Innovation

Mainframe – The Backbone of Business

ProcessPeople Technology

Old ways of working, once
state of the art, are now
outdated

As the mainframe
workforce continues to age
and retire, a skills shortage
is looming

Traditional tools don’t
appeal to next gen
developers nor provide
high productivity

Mainframe Challenges (Existential)

Pro’s Con’s
Rich functionality Limited graphical capabilities
Integrated with zOS Not similar to modern sw developer tools
Quick response time No integration with other platform tools

Pro’s Con’s
Rich functionality Rich Client – taking HW/DASD
Easy to use Difficult to maintain and deploy
Integrated with other tools Slow response time

IDE trend in a Mainframe Developer’s World

Past Present

• TSO/ISPF interfaces
• JCL/Rexx for build and

system testing
• Platform-dependent tools

• Workstation-based
Eclipse IDE

• Vendor plug-ins
• Proprietary tools

Primitive by
today’s

standards

Mainframe Developer Experience needs an overhaul

Customer Expectations

Testing is automated to reduce
cycle times and defect costs

Code is Continuously Integrated
and Continuously Delivered in a

release pipeline for more frequent
releases

Ops activities shift-left to bring
in feedback loops and

performance analytics earlier in
the process

Developer tools deliver code
insights and facilitate

collaboration across silos

What is DevOps?

believe lack of
enterprise DevOps
integration is having an
impact on the business

Source: DevOps.com, Bridging DevOps to the Mainframe, Mar 2019

believe they have any
integration between
enterprise &
mainframe DevOps

Mainframe / Enterprise DevOps Integration

Innovating while keeping the business running

PEOPLE PROCESS TECHNOLOGY

Accelerate
Software Delivery

Recruit &
Onboard Next-

gen

Align w/
Enterprise

DevOps

Drive Transfor-
mation

Reduce
Dev / QA / Ops

Costs

Customer Challenge: Modernizing at Speed

What is available for today’s developers to use?
• Lightweight text-editors for quick editing with community plugins
• Powerful IDEs for specialized languages
• CLIs to interact with services
• Choice of powerful scripting languages for build and automation
• Continuous Integration and Delivery orchestration tools

A non Mainframe Developer’s World

Mobile

DevOps Agile

Our Guiding Principle: Mainframe as Easy as Cloud

Open Source
DevOps Tools:

Distributed

Cloud

Mainframe

Extending Modern DevOps Practices to Mainframe

CA File Master Plus

CA InterTest

CA Mainframe Application Tuner

CA SymDump

CA Verify

Blazemeter

Test Data Manager

Service Virtualization

CA Mainframe
Operational Intelligence

CA OPS/MVS

CA AIOps

CA Database Management
for Db2 for z/OS

CA SYSVIEW

CA Mainframe Application Tuner

Application Performance Management

Agile Requirements Designer

Rally (fka CA Agile Central)

Automic Continuous
Delivery Automation

Automic Continuous
Delivery Director

CA Endevor SCM

CA Gen

Broadcom Mainframe DevOps Toolchain

What the next-generation knows
and wants

Modern DevOps built on open
source

 Proprietary software can’t keep up
Mainframe has much to gain

Strategy: Open Source Driven

Open source mainframe interface
for the next generation

ABOUT ZOWE

• Part of Linux Foundation’s Open
Mainframe Project (OMP)

• First open source project based on
z/OS

• Four main components:
• Command line interface

(CLI)
• API Mediation Layer
• Web UI
• Microservices

• Initial contributions from IBM,
Broadcom, Rocket

• Over 2,500 downloads
• v1.0 released February 11th

• Zowe.org

 Bridges enterprise DevOps to the mainframe
 Shifts the mainframe balance of power from

vendors/proprietary to community/OSS
 Makes mainframe an exciting career choice

• Attract new people
 Demystify the Z platform
 Enhance integration and consumability
 Promote Open community of practice

• Reduce learning curve
 Improve productivity
 Modern, platform-neutral interfaces
 Cloud-like experience

• Simplify architecture
 Reduce operational overhead
 Improve co-existence
 Enable rich ecosystem of free and commercial

solutions
16

Zowe Vision Statement

2018 Stack Overflow Survey

45% YoY

24% YoY

2019 Stack Overflow Survey

IDE Trend: VS Code Popularity

SCMs
e.g.,

Git
Github
Bitbucket
Gitlab

Code Quality
e.g.,

SonarQube
OWASP

Task Runners
e.g.,

NPM
Gradle
Gulp
Maven

Scripting
e.g.,

Python
Ruby
JavaScript
Bash

Test Automation
e.g.,

Mocha
JUnit
Jest
Taurus

APM & Analytics
e.g.,

ELK Stack
InfluxData
Prometheus
Grafana

Infrastructure Automation
e.g.,

SaltStack
Ansible

CI/CD
e.g.,

Jenkins
Cloudbees
TravisCI
GoCD

IDEs
e.g.,

VS Code
Eclipse Che

Open Source Extended

• Flexibility and freedom to developers
• Allow developers to work with CLI and/or their

favorite IDE or Editors, to perform their development
tasks with appropriate tooling

• Focus on developing common components

that enable that flexibility and freedom
• Implementation of standard protocols for editing

and debugging
• Develop once, use in any IDE/Editor that supports the protocol

• Implementation of standard interfaces/plugins
extensions (e.g for navigating resources etc.)

• Develop once, use the extension in any IDE that supports that
interface

The Future …

• Extend the open source cloud/web IDE Eclipse Che as a

complete IDE solution for cross platform development
• Delivered as containers to simplify the install and management
• Centrally managed
• Task oriented selection of the workspace with pre-built

technology stacks
• Leverage BOB and open source tooling
• Access to z/OS resources and tools

• Provide VS Code extensions

• Software developers may program in multiple languages
• Bring the right tools to the developer when they need them
• Team sharing

The Future …

21

• Provide a Enterprise solution
• for mainframe software and off-mainframe developers
• Support Enterprise standard tool usage
• Allow for developer flexibility
• Leverage BOB and open source tooling

• Software developers may program in multiple languages
• Bring the right tools to the developer when they need them
• Team sharing

• Flexibility
• Provide developers of choice

Goal:

What about faster access to the
tools I need

Saving & Sharing my
work

Tool integration

Access to the latest tooling
with updates

Changing languages

Quickly on-board new
developers

Che extensions for IBM z/OS platform

Starting with:
• Access to mainframe resources
• COBOL LSP implementation

To follow:
• LSP implementations for other mainframe

languages (PL/I, Assembler)
• Community requests

Announcing Eclipse Che4z subproject

Cloud/Web IDE framework
• Provides flexibility for using any IDE
• Using Theia based Editor
• VS Code user experience/extensions support
• Standard integration with Git
• Support of Language Server Protocol and Debug

Adapter Protocol
• Supports “Bring your own device”

Workspace
• Accelerate project and developer on boarding:

zero install development environment
• Remove inconsistencies between developer

environments
• Built-in security and enterprise readiness

• VS Code compatible, collaboration rich

Eclipse Che
Web IDE/Theia

Eclipse Che
Workspace Server

Kubernetes/Docker/OpenShift

Attribution: Lorisbac24hert [CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0)]

Eclipse Che workflow

Eclipse Che 7

Eclipse Che supports

• Multi-user and multi-tenancy

• Team Workspaces and organization

• Container support: Runs on OpenShift, Kubernetes, or Docker

• Your project and key dependency state persists between runs

Next-Generation IDE

Eclipse Che 7

Simply create new
workspaces

Team-Based Development
• Create custom stacks –

• runtimes based on your production
images, with the tools your
developers need

• Build\on a team stack, or
duplicating a workspace

Instant Project Onboarding
Onboard teams with powerful collaboration workspace
automation, and permissions. Developers in a team can use
their local IDE or the Che browser IDE.
• Share workspaces with anyone
• Control workspace permissions
Integrate developer services into a workspace
• Language Servers
• IntelliSense and Refactoring
• Debuggers
• Command line

Quickly get
started

Enterprise
management

DevOps Workspace Platform
Manage workspaces at scale with programmable
and customizable infrastructure that lets you
control system performance, availability, and
functionality.
• Use in the cloud or install locally
• Scale horizontally or vertically
• Keep source code off devices
• Enterprise security solutions

Eclipse Che
Web IDE/Theia

Eclipse Che
Workspace Server

Kubernetes/Docker/OpenShift

Extension for
mainframe

resource
access

Dev environments in containers
Zowe CLI – Git – dev tools

Language Server
implementations

Debug Adapter
implementations

Zowe
API
ML

Zowe
APIs

Also works
with VS Code

Also works
with VS Code
Visual Studio

IntelliJ
Emacs
Atom
Vim

Also works
with VS Code,
Visual Studio

Eclipse
Emacs

Vim

Mainframe
Open system

Open source

Extensions

Eclipse Che & Zowe

I prefer to use the editor capabilities I like

I like syntax
highlighting and

syntax check

I need to work in
multiple languages
without learning a

new tool/editor

I like having
content assist

I like having code
formatting
capabilities

• Adding features like auto complete, go to definition, or documentation on hover for a programming language
takes significant effort. Traditionally this work had to be repeated for each development tool, as each tool provides
different APIs for implementing the same feature.

• A Language Server is meant to provide the language-specific smarts and communicate with development tools
over a protocol that enables inter-process communication.

• The idea behind the Language Server Protocol (LSP) is to standardize the protocol for how such servers and
development tools communicate. This way, a single Language Server can be re-used in multiple development
tools, which in turn can support multiple languages with minimal effort.

• LSP is a win for both language providers and tooling vendors!

*From Official Language Server Protocol page: https://microsoft.github.io/language-server-protocol/

It was originally developed for Microsoft’s Visual Studio Code and is now an open standard

*What is Language Server Protocol ?

Using Common language protocol enables language plugins like COBOL and JCL to work with
Eclipse Che, VS Code and other IDE’s

JSON

Language ServerLanguage Server

Java

https://langserver.org

Developer tools/editorsDeveloper tools/editors

Other IDE’s

PLI

COBOL

JCL

HLASMText document publish

The user opens a file

The user makes edits

Document analysis

Document analysis

The user closes the file

Language Server Protocol (LSP)

• How the protocol communicates with the language server at the level of document references (URIs)
and document positions.

• These data types are programming language neutral and apply to all programming languages.

• The data types are not at the level of a programming language domain model which would usually
provide abstract syntax trees and compiler symbols (for example, resolved types, namespaces, …).

• The fact, that the data types are simple and programming language neutral simplifies the protocol
significantly.

• It is much simpler to standardize a text document URI or a cursor position compared with
standardizing an abstract syntax tree and compiler symbols across different programming languages.

The flow illustrates

• Not every language server can support all features defined by the protocol. LSP
therefore provides ‘capabilities’.

• A capability groups a set of language features. A development tool and the language
server announce their supported features using capabilities.

• As an example, a server announces that it can handle the ‘textDocument/definition’
request, but it might not handle the ‘workspace/symbol’ request. Similarly, a
development tool announces its ability to provide ‘about to save’ notifications before
a document is saved, so that a server can compute textual edits to format the edited
document before it is saved.

Capabilities

COBOL
JAVA

What that means for VS Code?

COBOL

JAVA

What that means for Eclipse Che ?

I prefer to use the debuggers I like

I want consistent
debugging
experience

I need to work in
multiple languages

I want to leverage
my remote
debugger

It takes a significant effort to implement the UI for a
debugger for features like
• source-, function-, conditional-, and inline breakpoints,
• variable values shown in hovers or inlined in the source,
• multi-process and multi-thread support,
• Multiple runtimes,
• navigating through complex data structures,
• watch expressions

Typically this work must be repeated for each
development tool
• Each tool uses different UI APIs
• Creating duplicated functionality (and implementation)

Current state of Debuggers…

Similar to Language Server Protocol, the idea behind the Debug
Adapter Protocol (DAP) is to abstract the way how the
debugging support of development tools communicates with
debuggers or runtimes into a protocol.

Since it is unrealistic to assume that existing debuggers or
runtimes adopt this protocol any time soon, we rather assume
that an intermediary component - a so called Debug Adapter -
adapts an existing debugger or runtime API to the Debug
Adapter Protocol providing “language smartness.”

This intermediary becomes the Debug Adapter which explains
the name of the protocol: Debug Adapter Protocol.

What is the Debug Adapter Protocol?

Debug AdapterDebug Adapter

Set Breakpoints request

Response: breakpoints

Break: Set Breakpoints

Variables request

Response: variables

Find Variable

Get Variable details

Exit

Exit

Start Debug adapter

Initialize request

Response: capabilities

Start Debug monitoring

Continue request

Response: status

Continue

Stopped
Stopped event

Debug
Mainframe
debugger

• The Debug Adapter Protocol makes it possible to implement a single generic debugger UI per
development tool and that Debug Adapters can be re-used across these tools. This reduces the effort
to support a new debugger considerably.

• Standardizing on a wire-protocol instead of an API and a client library has the advantage that a
debug adapter can be implemented in the language most suitable for the given debugger or runtime.

• Since the Debug Adapter Protocol was designed for supporting the debugging UI in a language
agnostic way, it is fairly high-level and does not have to surface all the fine details of the underlying
language and low-level debugger API. The most important data type used in the protocol are strings,
because that’s what the end user will see in the UI. So Debug Adapters typically aggregate information
received via debugger APIs into high-level, string-based data-structures that are directly consumed in
the UI of the development tool. Since this mapping is mostly straightforward and has little complexity,
Debug adapters can be developed with minimal effort.

The flow illustrates

VARIABLE VALUE HEX
WS-RESULT-COLOR-FOUND. 1

Debugging COBOL in VS Code

• Todd prepare the server

• Deploying the Che

• Deploy LSP service

Todd
Product Administrator

Deploy the solution

• Use URL from admin

• Choose proper stack

• Create workspace

• Configure workspace
Michelle

Application developer

Developer getting started

• Open workspace

• Access the code
• Using Git to Endevor
• Using File Explorer for z/OS

• Make changes in code
• Using COBOL smart editors leveraging

LSP support
• Using HLASM smart editor edit the code

• Debug the code

Michelle
Application developer

Developer – working with code

Eclipse Che
Coming Soon

Same as non-mainframe

• Cloud-based Eclipse Che IDE
• Workspaces, CLI’s, REST APIs
• DevOps aligned
• Open source tools

Past
Mainframe only

Present
Similar to non-mainframe

• TSO/ISPF interfaces
• JCL/Rexx for build and system testing
• Waterfall aligned
• Platform-dependent tools

• Workstation-based IDE (Eclipse, VS
Code,…)

• Vendor plug-ins
• Agile aligned
• Proprietary tools

Maintenance
costs

eliminated

Modern Developer Experience

Microservices

API Mediation Layer

Web Desktop for OpsCLI: build | deploy
CODE

TEST MONITOR

DEPLOY

O
PERATE

Pl
ug

in
s

Mainframe

DevOps Architect

Cloud/Web IDE

Developer
IT Ops

Provide developers the
choice of their IDE

VS Code

In conclusion…

1. Developers get to use the tools and languages of their choice
2. Remove technical and cultural barriers to automating mainframe testing
3. Remove technical and culture barriers to mainframe CI/CD
4. Enable cross-platform automated delivery

+ =

Modern Developer Summary

Want to learn more about Zowe?

• Prioritize outcomes and take actions that move toward those goals
• Alignment w/ Enterprise DevOps is critical
• Start making progress on automated testing
• Modernizing the developer experience with Git / Endevor bridge

and Zowe drives multiple outcomes
• Empower your change agents to automate

– w/ Zowe and open source tools
– Bottom-up adoption
– Change begins w/ culture

How to get started
Navigating your DevOps journey

Broadcom offerings (no fee)

Broadcom
DevOps

Center of
Excellence

Use Case
Exploration

Format: 1/2 day
facilitated session using
Design Thinking practices

Deliverable: Prioritized
set of DevOps-related
use cases by persona
presented in a read-out
session

EXPLORE

DevOps
Assessment

Format: 1-2 day agenda
for interviews with
Leadership,
Development, &
Operations teams
Deliverable: Custom
DevOps Assessment with
maturity ratings (1-5),
detailed findings,
recommendations & next
steps (workshops, health
checks, integrations,
tooling)

ASSESS

CA Brightside
Workshop

Format: 2-day, on-site
workshop, facilitated by a
DevOps expert

Deliverable: Participants
will learn how to automate
mainframe AppDev using
Zowe with modern tools
like Jenkins, Gulp, Jest,
and Visual Studio Code

LEARN

DevOps Proof of
Concept

Format: Access to a
DevOps/Zowe expert for
mutually-defined PoC

Deliverable: Successful
application of Zowe and
complementary tooling in
your environment
designed to demonstrate
feasibility and ROI

PROVE

Navigating your DevOps journey

Contact:
Gerald.Pfeiffer@Broadcom.com

EXPLORE

ASSESS

LEARN

PROVE o linkedin.com/in/gerald-
pfeiffer-6911176/

o @GeraldMainframe

Q&A
Broadcom

DevOps
Center of

Excellence

Please submit your session feedback!

• Do it online at http://conferences.gse.org.uk/2019/feedback/ao

• This session is AO

