
Db2 12 SQL Enhancements
Chris Crone
IBM

November 2019
Session A

Place your
custom session
QR code here.
Please remove
the border and
text beforehand.

Agenda

• Overview of the Family
• Review of Db2 11 Capabilities Updated in Db2 12
• Db2 12
• Summary

Overview of the Family

Db2 SQL
z

l
u
w

c
o
m
m
o
n

Db2 12 for z/OS and Db2 11 Linux, Unix & Windows (2016)
(not exhaustive, some features may be missing)

Multi-row INSERT, FETCH & multi-row cursor UPDATE, dynamic scrollable cursors, GET DIAGNOSTICS, join across
encoding schemes, FETCH CONTINUE, SELECT FROM MERGE, routine versions, time zone support, transparent archive
query, accelerated tables, trigger versions, temporal enhancements, more built-in functions

Inner and outer joins, table expressions, subqueries, GROUP BY, complex correlation, global temporary tables, CASE, 100+
built-in functions including SQL/XML, limited fetch, insensitive scrollable cursors, UNION everywhere, MIN/MAX single index,
self-referencing updates with subqueries, sort avoidance for ORDER BY, row expressions, CALL from trigger, statement
isolation, range partitioning, 2M statement length, GROUP BY expression, sequences, scalar fullselect, materialized query
tables, common table expressions, recursive SQL, CURRENT PACKAGE PATH, VOLATILE tables, star join, sparse index,
qualified column names, multiple DISTINCT clauses, ON COMMIT DROP, transparent ROWID column, FOR READ ONLY,
KEEP UPDATE LOCKS, SET CURRENT SCHEMA, client special registers, long SQL object names, SELECT FROM INSERT,
UPDATE or DELETE, INSTEAD OF trigger, SQL PL in routines, file reference variables, XML, FETCH FIRST & ORDER BY in
subselect/fullselect, EXCEPT, INTERSECT, MERGE, BIGINT, caseless comparisons, not logged tables, text search functions,
spatial, data compression, DECFLOAT, optimistic locking, ROLE, TRUNCATE, index & XML compression, created temps,
inline LOB, administrative privileges, implicit cast, datetime enhancements, currently committed, moving sum & average, index
include columns, row and column access controls, time travel query, trusted contexts, global variables, GROUPING SETS,
ROLLUP, CUBE, DROP COLUMN, user-defined array types, Xquery, IS NOT DISTINCT FROM, TRANSFER ownership,
OFFSET clause, SQL PL constants, BINARY/VARBINARY, obfuscation

Updateable UNION in views, more built-in functions, SET CURRENT ISOLATION, MDC, XML enhancements, additional
user-defined types (row and cursor), MODULEs, BOOLEAN, column organized tables (BLU Acceleration), parameter
defaults, user-defined aggregate functions, INT2, INT4, INT8, FLOAT4, FLOAT8, BPCHAR, OVERLAPS predicate

Db2 11 - Review

SQL PL Array Data Type

Array Data Type Overview

Db2 for z/OS introduces support for Arrays inside SQL Routines (UDFs or Procedures).
• Prior to Db2 11, users might have utilized the following mechanisms to pass data to/from

Routines:
• DECLARED GLOBAL TEMPORARY TABLE,
• Concatenated Strings,
• Long lists of parameters, or …

• The Array Data Type consists of an ordered set of elements having the same data type
(length, precision, scale, CCSID as appropriate)

• Two Types of Arrays are Supported:
• Ordinary Arrays

• Have a maximum cardinality (2 Billion)
• The data type of the index value is INTEGER

• Associative Arrays
• Do not have a defined upper bound on the number of elements
• The data type of the index values can be an INTEGER or character string (not a LOB)

9

Creating an Array Type

10

• CREATE Ordinary and Associative arrays via CREATE TYPE statement

-- ordinary array with integer value & integer index
CREATE TYPE OrdIntArray AS INTEGER ARRAY[100];
-- associative array with integer value & integer index
CREATE TYPE AssocIntArray AS INTEGER ARRAY[INT];
-- associative array with integer value & varchar index
CREATE TYPE AssocIntArrayVarIdx AS INTEGER ARRAY[VARCHAR(13)];

If data-type2 is specified,
then array is an
Associative Array

All types except
XML

-- ordinary array with integer value & integer index
CREATE TYPE OrdIntArray AS INTEGER ARRAY[100];
-- associative array with integer value & varchar index
CREATE TYPE AssocIntArrayVarIdx AS INTEGER ARRAY[VARCHAR(13)];

13

Assigning values to Arrays

Construct arrays with array-constructor and assign values with SET assignment-statement

-- create a UDF that accepts and returns an ordinary array
CREATE FUNCTION UDF1 (P1 OrdIntArray, P2 INTEGER)
RETURNS OrdIntArray
BEGIN
-- declare two ordinary array with same array type
DECLARE myOrdIntArray OrdIntArray;
DECLARE my2ndOrdIntArray OrdIntArray;
-- set an ordinary array with 3 values using an array-constructor
SET myOrdIntArray = ARRAY[10,20,30];

-- set a 2nd ordinary array’s array element, using array-element-specification
SET my2ndOrdIntArray[1] = myOrdIntArray[3];

…
END;

my2ndOrdIntArray

Index Value

1 30

myOrdIntArray

Index Value

1 10
2 20
3 30

14

Build an Array from Table Data

ARRAY_AGG Aggregate Function

The ARRAY_AGG function returns an array

CREATE TYPE OrdVchArray AS VARCHAR(12) ARRAY[100];

DECLARE myOrdVchArray OrdVchArray;

SET myOrdVchArray =
(SELECT ARRAY_AGG(PHONE)
FROM EMPLOYEE
WHERE ID IS NOT NULL
ORDER BY ID, PHONE);

EMPLOYEE

ID PHONE

111222 408-555-1111
333444 408-555-3331
222333 408-555-2222
111222 408-555-1112
333444 408-555-3332

myOrdVchArray

Index Value

1 408-555-1111
2 408-555-1112
3 408-555-2222
4 408-555-3331
5 408-555-3332

Construct an ordinary Array

15

Treating an Array Like a Table
Treat an array like a table i.e. fetch data from the array (using UNNEST
collection-derived-table) just like you would from a table

from-clause
collection-derived-table

A collection-derived-table can be used to convert the elements of one or more arrays
into column values in separate rows of an intermediate result table

Associative Array Example
SELECT T.State, T.Population
FROM UNNEST(myAssocIntArray) AS T(State,Population);

myAssocIntArray

Index Value

California 2000000
Oregon 140000

State Population

California 2000000
Oregon 140000

Deconstruct an Array

16

Deleting Elements From An Array
• ARRAY_DELETE Scalar Function

• The ARRAY_DELETE function deletes elements from an array.
• The result of the function has the same data type as array-expression.

myAssocIntArray

Index Value

California 2000000
New Hampshire 18000
New York 1250000

-- create a procedure that accepts and returns an associative array
CREATE PROCEDURE PROC2 (IN InP1 INTEGER,

IN InP2 AssocIntArrayVarIdx,
INOUT InOutP1 AssocIntArrayVarIdx,
OUT OutP1 AssocIntArrayVarIdx)

BEGIN
-- declare two associative arrays with the same array type
DECLARE myAssocIntArray AssocIntArrayVarIdx;
-- set an associative array with 5 values
SET myAssocIntArray['California'] = 2000000;
SET myAssocIntArray['Oregon'] = 140000;
SET myAssocIntArray[New York'] = 1250000;
SET myAssocIntArray[‘New Hampshire'] = 18000;

-- remove the state of ‘Oregon’ from the array
SET myAssocIntArray = ARRAY_DELETE(myAssocIntArray,’Oregon’);
-- remove all states that begin with ‘New’ from the array
SET myAssocIntArray = ARRAY_DELETE(myAssocIntArray, ’New Hampshire’, ‘New York’);
…

END;

myAssocIntArray

Index Value

California 2000000
New Hampshire 18000
New York 1250000
Oregon 140000

myAssocIntArray

Index Value

California 2000000

17

Finding an Array Element Index
Name Description
ARRAY_FIRST returns the minimum array index value of the array
ARRAY_LAST returns the maximum array index value of the array
ARRAY_NEXT returns the next larger array index value for an array relative to the specified array index argument

ARRAY_PRIOR returns the next smaller array index value for an array relative to the specified array index argument

-- create a procedure that accepts and returns an associative array
CREATE PROCEDURE PROC2 (IN InP1 INTEGER,

IN InP2 AssocIntArrayVarIdx,
INOUT InOutP1 AssocIntArrayVarIdx,
OUT OutP1 AssocIntArrayVarIdx)

BEGIN
-- declare local varchar variable
DECLARE myVarchar, my2ndVarchar VARCHAR(20);
-- declare two associative arrays with the same array type
DECLARE myAssocIntArray AssocIntArrayVarIdx;
-- set an associative array with 2 values
SET myAssocIntArray['California'] = 2000000;
SET myAssocIntArray['Oregon'] = 140000;

-- sets a local variable to the index that follows ‘California’
SET myVarchar = ARRAY_NEXT(myAssocIntArray,’California’);
…

END;

myVarchar = ‘Oregon’

Global Variables

Global Variables Overview

• Benefits
• Allows users to share information across SQL statements
• Allows capability to set once, use everywhere
• Provides additional security via Db2 GRANT and REVOKE

• Characteristics
• Similar to special registers
• Their definitions are global and shared across different connections
• Their contents are only shared within the same connection

• Each connection maintains its own instantiation
• Their contents are NOT affected by COMMIT nor ROLLBACK
• Use only the UNICODE encoding scheme

19

Writing and Reading Global Variables

• WRITE to via:
• SET, SELECT INTO, VALUES INTO, OUT or inOUT parms

• READ from via:
• Anywhere an expression can be specified
• Exceptions

• check constraints, MQTs, views with WITH CHECK OPTION, keys (index on expressions, XML
indexes, spatial indexes), arrays

• Values are locked in as soon as the following:
• View definition
• SQL scalar UDF or table UDF body
• Trigger action
• Row permission definition
• Column mask definition
• Auto-binding a package

20

Using and Referencing a Global Variable

21

Create a global variable via new CREATE VARIABLE statement

Setting and referencing a global variable
-- create a global variable
CREATE VARIABLE Charge_Rate DECIMAL(4,2) DEFAULT 0.00;

-- create a procedure that determines charge rate
CREATE PROCEDURE Loan_Charge_Rate (IN ID CHAR(5))
BEGIN
..
SELECT SCORE INTO Cust_Score FROM CUSTOMER WHERE ACCOUNT = ID;
IF Cust_Score = ‘Good’ THEN SET Charge_Rate = 1.0;
ELSE SET Charge_Rate = 3.0;

END;

-- calling application
myApp: PROCEDURE(Buyer, Amount);
…
CALL Loan_Charge_Rate(Buyer);
UPDATE CUSTOMER SET BALANCE = BALANCE + (Amount * Charge_Rate);

END myAPP;

Temporal Enhancements

Temporal Based Analysis

23

• System-maintained temporal tables
• Db2 generated history
• AS OF query

• User-maintained temporal tables
• User provide time period
• Automatic business time key enforcement.
• Query over any current, any prior, future point/period in business time.
• New time range update/delete statements support automatic row splitting,

exploited by the merge statements.

• Bi-temporal, combination of the above two
See http://www.redbooks.ibm.com/abstracts/sg247892.html?Open Chapter 7
Application Enablement for more information

http://www.redbooks.ibm.com/abstracts/sg247892.html?Open

Auditing and Auditing with Temporal Example
In this example, user_id (SESSION_USER) and op_code (I/U/D) are audited. Db2 can audit a subset of
special registers and session variables. The auditing is supported on regular table. When combined
with temporal, it provides complete history for auditing.

CREATE bank_account_stt
(account_no INT NOT NULL,
balance INT,
user_id VARCHAR(128) GENERATED ALWAYS AS (SESSION_USER),
op_code VARCHAR(1) GENERATED ALWAYS AS (DATA CHANGE OPERATION),
sys_start TIMESTAMP(12) NOT NULL GENERATED ALWAYS AS ROW BEGIN,
sys_end TIMESTAMP(12) NOT NULL GENERATED ALWAYS AS ROW END,
trans_id TIMESTAMP(12) GENERATED ALWAYS AS TRANSACTION START ID,
...
PERIOD SYSTEM_TIME(sys_start, sys_end));

CREATE bank_account_hist
(account_no INT NOT NULL,
balance INT,
user_id VARCHAR(128),
op_code VARCHAR(1),
sys_start TIMESTAMP(12) NOT NULL,
sys_end TIMESTAMP(12) NOT NULL,
trans_id TIMESTAMP(12),
...);

ALTER TABLE bank_account_stt ADD VERSIONING USE HISTORY TABLE
bank_account_hist ON DELETE ADD EXTRA ROW;

Auditing Example
At time 2, Claire inserts a row into bank_account_stt table (account no ”13452’, balance $2000);

account balance User op-code sys_start sys_end
---------- ---------- -------- ----------- ------------ -----------

base table 13452 $2000 Claire I 2 Max
History table (empty)

At time 6, Steve updates the row increasing $500 balance (account_no "13452", balance $2500):
account balance User op-code sys_start sys_end

---------- ---------- -------- ----------- ------------ -----------
Base table: 13452 $2500 Steve U 6 Max
History table: 13452 $2000 Claire I 2 6

At time 15, Rick deletes the row of account_no "13452" (account_no "13452", balance $2500, removed
from current table):

account balance User op-code sys_start sys_end
---------- ---------- -------- ----------- ------------ -----------

Base table (empty)
History table: 13452 $2000 Claire I 2 6

13452 $2500 Steve U 6 15
13452 $2500 Rick D 15 15

Based on history table, the row for account 13452 with balance $2000 was inserted by Claire at time
2, the balance was updated to $2500 by Steve at time 6, and was deleted by Rick at time 15 .

Db2 Data as a Service
Db2 Cloud/Mobile modernization with RESTful APIs and JSON

Blog on how to - https://ibm.biz/BdiqLp

Enterpris
e

Apps

Enterpris
e

Data

Enterprise
Transactio

n
Processing

Systems of Record

On-Premise APIs

Cloud APIs

Mobile-Optimized APIs

Cloud-based
Services

Enterprise
Systems

Integration

z/OS Connect
or Db2 native

REST

Serving mobile data directly from z/OS is 40%
less expensive than exporting to a system of

engagement

CICS,
IMS

Batch,
WAS

• Many modern application developers work with REST services and JSON data formats
• Db2 12 (and Db2 11 APAR PI66828) ship a Native Db2 REST service

• Easier DBA management of Db2 RESTful services, means easier adoption
• z/OS Connect Enterprise Edition (zCEE) integration
Native REST Client Certificate Support – V11: PI80087 ; V12: PI80088
Native REST Trusted Context Support - V11: PI80087 ; V12: PI80088
Native REST Persistent Connection Support – V11: PI86867 ; V12: PI86868
Native REST TSO BIND/FREE Service Support – V11: PI86867 ; V12: PI86868
Native REST REBIND Package Support – V11: PI90243 ; V12: PI90243
Native REST DDF Profile Monitoring – V11: PI90243 ; V12: PI90243
Native REST Support for IDAA V5 – V11: PI90243 ; V12: PI90243

Native Db2 REST
service provider
now available

Db2 12

Pagination, LIMIT, and
OFFSET

• Support comparison operator <, <=, >, and >= in basic predicate with row-value-expression
•Disallow non-deterministic operands

• Available when APPLCOMPAT is ‘V12R1’
• V11 allows comparison operator = and <> only

Data-Dependant Pagination

• Instead of coding
• WHERE (LASTNAME = ‘JONES’ AND FIRSTNAME > ‘WENDY’)

OR (LASTNAME > JONES)

• You can now code
• WHERE (LASTNAME, FIRSTNAME) > (‘JONES’, ‘WENDY’)
• Db2 will convert to original ‘OR’ syntax

• Simplifies SQL coding – especially when number of search columns increase

• Performance expectation (original or new (C1, C2) <|<=|>=|> (:HV1, :HV2))

• Because pagination is Data-Dependent, it may outperform the OFFSET clause

• Must update predicate starting point to reflect the last row from the prior page

• Data dependent pagination performance improvement from 10% from small
offsets to 80-90% or more for large offsets

Use Cases and Considerations – Data-
Dependent Pagination

Applications require to access part of Db2 result set based on a certain position

‒ Numeric-based pagination if applications need to access part of Db2 result set
based on an absolute position

‒ Db2 9, 10 or 11
‒ SQL queries using a scrollable cursor, rowset cursor, an OLAP function, or an

SQL PL routine are often used to implement numeric-dependent pagination

‒ Db2 12 - OFFSET m ROWS clause
‒ Allows Db2 to skip unwanted rows of the result set at 1st FETCH time and return

the desired part of the result set, which can be an efficient way to filter unwanted
rows from Db2 result set.

‒ Other database systems, including Db2 LUW, support the syntax

Result Set Positioning

Applications require the use a variable value in the FETCH FIRST clause

‒ Db2 11
• Allow INTEGER constant in FETCH FIRST clause only

Example: FETCH FIRST 10 ROWS ONLY
‒ Db2 12

• Allow variable in FETCH FIRST clause
Example: FETCH FIRST :HV1 ROWS ONLY

• Allow BIGINT value
è Allow castable to BIGINT

• Other database systems, including Db2 LUW, support the function
• Application developers are more efficient to develop good performing

mobile applications

All Function is available with APPLCOMPAT(V12R1)

Result Set Truncation (LIMIT)

OFFSET row-count ROWS
–Specify the number of rows to skip from the beginning of a result set
–Allow variables and constants

• Allow a zero or positive value; 0 means no row is skipped
–Allow castable to bigint

Numeric-based pagination Syntax - subselect

*** Also available on SELECT INTO statements

Numeric-based Pagination Syntax – fullselect

As you are paging forward from starting point – Prior to Db2 12
‒ 1st request FETCH FIRST 20 ROWS ONLY (to fill 1st screen)
‒ 2nd request FETCH FIRST 40 ROWS ONLY (to fill 2nd – application discards 1st 20)

With Db2 12 - You can now code
‒ OFFSET 0 ROWS FETCH FIRST 20 ROWS ONLY
‒ OFFSET 20 ROWS FETCH FIRST 20 ROWS ONLY
‒ or OFFSET ? ROWS FETCH FIRST ? ROWS ONLY…

Performance expectation

‒ If a customer is currently using application logic to discard the first n rows:

• 1st request FETCH FIRST 20 ROWS ONLY (to fill 1st screen)

• 2nd request FETCH FIRST 40 ROWS ONLY (to fill 2nd – application discards 1st 20)

‒ Using OFFSET clause can show 10% CPU/elapsed saving for small OFFSET – with
savings accumulating up to 80-90% saving for large OFFSET

• OFFSET 0 ROWS FETCH FIRST 20 ROWS ONLY

• OFFSET 20 ROWS FETCH FIRST 20 ROWS ONLY

Use Cases and Considerations – Numeric-based Pagination

FETCH FIRST n ROWS ONLY enhancement
–Allow variables (fetch-row-count)

• Does not allow variable in the PREPARE ATTRIBUTES string
–Allow a zero value to mean ‘no row is requested’
–Allow castable to BIGINT
–New keyword NEXT interchangeable with keyword FIRST
–Disallow in the outermost fullselect for a sensitive dynamic scrollable cursor
–Allow in the outermost fullselect that contains the FOR UPDATE OF clause
–Require ORDER BY clause to ensure rows being returned are predictable
–FETCH FIRST constant ROWS ONLY is ignored by the CONCENTRATE

STATEMENTS WITH LITERALS clause in the PREPARE attribute-string

FETCH Clause Enhancement

Examples:
ATTRSTR = ‘OFFSET 20 ROWS FETCH FIRST 4 ROWS ONLY;

EXEC SQL PREPARE STMT1 ATTRIBUTES :ATTRSTR FROM :STMT;

Numeric-based Pagination for DYNAMIC SQL

Syntax alternatives for OFFSET and FETCH FIRST keywords

‒ Syntax alternatives are available when APPLCOMPAT is ‘V12R1’

LIMIT – Syntax Alternatives

Affect Optimizer’s decision on avoiding sort if OPTIMIZE FOR n ROWS is omitted
• Assume a value for FETCH FIRST variable ROWS ONLY

è Subselect: 25
è Searched DELETE: 10000

Prune the query block if FETCH FIRST 0 ROWS ONLY is specified in a subselect
• Build bind-time pruning predicate 1 = 2 if a constant
• Build run-time pruning predicate variable > 0 if a variable

Replicate FETCH FIRST n ROWS ONLY into inner query block
• Must satisfy ORDER BY and FETCH FIRST push-down rules
• Reduce the number of rows being returned from underneath subselect or fullselect
• Example: SELECT C1 FROM T1 è (SELECT C1 FROM T1

UNION ALL ORDER BY 1 FETCH FIRST 10 ROWS ONLY)
SELECT C1 FROM T2 UNION ALL
ORDER BY 1 (SELECT C1 FROM T2
FETCH FIRST 10 ROWS ONLY; ORDER BY 1 FETCH FIRST 10 ROWS ONLY)

ORDER BY 1
FETCH FIRST 10 ROWS ONLY;

Performance Consideration

ARRAY Data Type Support

Array Type (V11)

SQL PL variable (V11)

Global variable (V12)

--create ordinary array type global variable
CREATE VARIABLE myOrdIntAGV OrdIntArray;

--create ordinary array type global variable
CREATE VARIABLE myAssocIntAGV AssocIntArrayVarIdx;

--declare ordinary array type SQL PL variable
DECLARE VARIABLE myOrdIntAGV OrdIntArray;

--declare ordinary array type SQL PL variable
DECLARE VARIABLE myAssocIntAGV AssocIntArrayVarIdx;

--create ordinary array type: INTEGER values, max 100 elements
CREATE TYPE OrdIntArray AS INTEGER ARRAY[100];

--create associative array type: INTEGER values, VARCHAR index
CREATE TYPE AssocIntArrayVarIdx AS INTEGER ARRAY[VARCHAR(10)];

Array Type and Array Variable Examples

Piecewise DELETE

§ The searched delete will be enhanced to allow the fetch-clause to be specified:

New Syntax on DELETE

§ Customers want to be able to mitigate the effects of locking and logging when potentially
millions of rows could be affected by a simple statement like:

"DELETE FROM T1 WHERE C1 > 7".
§ Solution

§ Allow the fetch-clause to be specified on a searched delete statement

DELETE FROM T1 WHERE C1 > 7 FETCH FIRST 5000 ROWS ONLY;
COMMIT;
DELETE FROM T1 WHERE C1 > 7 FETCH FIRST 5000 ROWS ONLY;
COMMIT;

§ Restrictions
§ Cannot reference a temporary table
§ Cannot reference a view that contains an INSTEAD of TRIGGER (use the base table)
§ Cannot execute this statement on the accelerator

https://www.idug.org/p/bl/et/blogid=278&blogaid=648

Piece-wise Modification of Data

Enhanced Merge

1. Source can be table, view,
fullselect, host var array, or list of
values.

2. Allow additional predicates in
MATCHED and NOT MATCHED
clauses.

3. Allow DELETE as an action.
4. Allow multiple UPDATE, DELETE,

and INSERT actions.
5. Allow IGNORE as an action.
6. Allow SIGNAL statement.
7. A row in target table can only be

operated on once (u/d/i).
8. Atomic operation

Not specifying “NOT ATOMIC…”
signifies Extended MERGE

1. Source can only be host var array
or list of values.

2. Single simple MATCHED and
NOT MATCHED clauses.

3. Only allow one UPDATE and one
INSERT operation.

4. A row in target table can be
operated multiple times.

5. NOT atomic operation
NOT ATOMIC CONTINUE… required
if more than one row

Original MERGE Extended MERGE

Comparing Original MERGE –vs – Extended MERGE

MERGE INTO CONTACT A
USING (VALUES
(:W300-LASTNAME, :W300-FIRSTNAME , :W300-TELEPHONE-NUMBER)

FOR 10 ROWS) AS B
(LASTNAME, FIRSTNAME, TELEPHONE_NUMBER)

ON (A.TELEPHONE_NUMBER = B.TELEPHONE_NUMBER)
WHEN MATCHED THEN UPDATE -- UPDATE when matched

SET A.LASTNAME = B.LASTNAME, A.FIRSTNAME = B.FIRSTNAME
WHEN NOT MATCHED THEN INSERT -- INSERT when not matched

(LASTNAME, FIRSTNAME, TELEPHONE_NUMBER)
VALUES (B.LASTNAME, B.FIRSTNAME, B.TELEPHONE_NUMBER)

NOT ATOMIC CONTINUE ON SQLEXCEPTION

Example of Multi-Row MERGE (Original Merge)

MERGE INTO ACCOUNT T
USING
(SELECT ACCOUNT_NUMBER, AMOUNT, ORDER_TSTAMP FROM ORDERS)
AS S
ON (S.ACCOUNT_NUMBER=T.ACCOUNT_NUMBER and

S.ORDER_TSTAMP=T.ORDER_TSTAMP)
WHEN MATCHED THEN

UPDATE SET T.AMOUNT = S.AMOUNT
WHEN NOT MATCHED THEN

INSERT (ACCOUNT_NUMBER, AMOUNT, ORDER_TSTAMP)
VALUES(S.ACCOUNT_NUMBER, S.AMOUNT, S.ORDER_TSTAMP)

NOT ATOMIC CONTINUE ON SQLEXCEPTION

MERGE with FULLSELECT

https://www.idug.org/p/bl/et/blogid=278&blogaid=664

MERGE INTO archive ar
USING (SELECT activity, description, date, last_modified
FROM activities_groupA) ac
ON (ar.activity = ac.activity) AND ar.group = ’A’
WHEN MATCHED AND ar.last_modified < ac.last_modified THEN
UPDATE SET
(description, date, last_modified) = (ac.description, ac.date, DEFAULT)

WHEN MATCHED AND ar.last_modified = ac.last_modified THEN
UPDATE SET
(description, date,) = (ac.description, ac.date)

WHEN NOT MATCHED AND ac.date >= CURRENT DATE THEN
INSERT
(group, activity, description, date)
VALUES (’A’, ac.activity, ac.description, ac.date)

More MATCH and NOT MATCHED Conditions Allowed

MERGE INTO archive ar
USING (SELECT activity, description, date, last_modified
FROM activities_groupA) ac
ON (ar.activity = ac.activity) AND ar.group = ’A’
WHEN MATCHED AND ar.last_modified < ac.last_modified THEN
UPDATE SET
(description, date, last_modified) = (ac.description, ac.date, DEFAULT)

WHEN MATCHED AND ar.last_modified = ac.last_modified THEN
UPDATE SET
(description, date,) = (ac.description, ac.date)

WHEN MATCHED AND ac.date < CURRENT DATE THEN
DELETE

WHEN NOT MATCHED AND ac.date >= CURRENT DATE THEN
INSERT
(group, activity, description, date)
VALUES (’A’, ac.activity, ac.description, ac.date)

DELETE is Allowed Now

MERGE INTO archive ar
USING (SELECT activity, description, date, last_modified
FROM activities_groupA) ac
ON (ar.activity = ac.activity) AND ar.group = ’A’
WHEN MATCHED AND ac.date IS NULL THEN SIGNAL SQLSTATE ’70001’
SET MESSAGE_TEXT =
ac.activity CONCAT ’ cannot be modified. Reason: Date is not known’

WHEN MATCHED AND ac.date < CURRENT DATE THEN
DELETE

WHEN MATCHED AND ar.last_modified < ac.last_modified THEN
UPDATE SET
(description, date, last_modified) = (ac.description, ac.date, DEFAULT)

WHEN NOT MATCHED AND ac.date IS NULL THEN SIGNAL SQLSTATE ’70002’
SET MESSAGE_TEXT =
ac.activity CONCAT ’ cannot be inserted. Reason: Date is not known’

WHEN NOT MATCHED AND ac.date >= CURRENT DATE THEN
INSERT
(group, activity, description, date)
VALUES (’A’, ac. activity, ac.description, ac.date)

ELSE IGNORE

IGNORE and SIGNAL

§ SELECT FROM - INSERT and UPDATE Supported
§FINAL TABLE clause MUST be specified

SELECT FROM FINAL TABLE MERGE ….

§ SELECT FROM DELETE NOT supported

SELECT FROM MERGE

SQL PL

Basic and Advanced Triggers

• Question: How does Db2 know what type of trigger to create?
• Answer: User specified MODE DB2SQL on CREATE TRIGGER

63

MODE DB2SQL

YES NO

Basic Trigger Advanced Trigger

Advanced Trigger Example

64

CREATE TRIGGER MYTRIG01
BEFORE INSERT ON MYTAB
REFERENCING NEW AS N
FOR EACH ROW
ALLOW DEBUG MODE
QUALIFIER ADMF001
WHEN(N.ending IS NULL OR n.ending > '21:00')
L1: BEGIN ATOMIC

IF (N.ending IS NULL) THEN
SET N.ending = N.starting + 1 HOUR;

END IF;
IF (N.ending > '21:00') THEN

SIGNAL SQLSTATE '80000'
SET MESSAGE_TEXT = 'Class ending time is

beyond 9 pm';
END IF;
SET GLOBAL_VAR = NEW.C1;

END L1#

Trigger body contains logic.

If the class end time is null,
the value is set to 1 hour after the

start of the class.

Otherwise, if the class ends after
9pm an error is returned.

IF statement (SQL control statement)

SIGNAL statement (SQL control statement)

New options can be
specified

Enhanced SET-assignment-statement

Altering an Advanced Trigger Example

65

ALTER TRIGGER MYTRIG01
ADD VERSION V2
REFERENCING NEW AS N
FOR EACH ROW
WHEN(N.ending IS NULL OR n.ending > '22:00')
L1: BEGIN ATOMIC
IF (N.ending IS NULL) THEN
SET N.ending = N.starting + 1 HOUR;

END IF;
IF (N.ending > '22:00') THEN
SIGNAL SQLSTATE '80000'
SET MESSAGE_TEXT =

'Class ending time is beyond 10 pm';
END IF;

END L1#

ALTER TRIGGER MYTRIG01 ACTIVATE VERSION V2#

After altering the trigger, issue ALTER
TRIGGER ACTIVATE with new version ID to
define version V2 of the trigger as the
active version of the trigger.

Add a version to an existing trigger.

For the new version, change the end time
check to 10pm, instead of 9pm.

Replacing an Advanced Trigger Example

66

CREATE OR REPLACE TRIGGER MYTRIG01
VERSION V1
REFERENCING NEW AS N
FOR EACH ROW
WHEN(N.ending IS NULL OR N.ending > '23:00')
L1: BEGIN ATOMIC
IF (N.ending IS NULL) THEN
SET N.ending = N.starting + 1 HOUR;

END IF;
IF (N.ending > '23:00') THEN
SIGNAL SQLSTATE '80000'
SET MESSAGE_TEXT =
'Class ending time is beyond 11 pm';

END IF;
END L1#

ALTER TRIGGER MYTRIG01 ACTIVATE VERSION V1#

Replace trigger having VERSION V1.

For the new version, change the end
time check to 11pm.

After replacing the trigger with
VERSION V1, issue ALTER TRIGGER
ACTIVATE with V1 to activate the
updated version of the trigger (i.e. V2
was the active version before).

Modifying a trigger without affecting the
activation order

67

• Create 3 BEFORE INSERT triggers against table T1
– When an INSERT statement is issued against table T1, MYTRIG1 is activated then MYTRIG2 is activated then MYTRIG3 is activated

CREATE TRIGGER
MYTRIG1
BEFORE INSERT ON T1
VERSION V1 . . .

CREATE TRIGGER
MYTRIG3
BEFORE INSERT ON T1
VERSION V1 . . .

CREATE TRIGGER
MYTRIG2
BEFORE INSERT ON T1
VERSION V1 . . .

CREATE OR REPLACE TRIGGER MYTRIG2 VERSION V1 . . .

ALTER TRIGGER MYTRIG2 REPLACE VERSION V1 . . .

ALTER TRIGGER MYTRIG2 ADD VERSION V2 . . .
ALTER TRIGGER MYTRIG2 ACTIVATE VERSION V2 . . .

• Modify trigger MYTRIG2, keeping activation order in tact:
– Solution 1: Issue a CREATE OR REPLACE with same version

– Solution 2: Issue an ALTER TRIGGER REPLACE VERSION with same version

– Solution 3: Issue an ALTER TRIGGER ADD VERSION with different version with a different
version followed by an ALTER TRIGGER ATIVATE VERSION

Dynamic SQL in Compiled SQL Scalar Functions
• Support Dynamic SQL inside of compiled SQL scalar functions like what is

supported in SQL Procedures
• Available in Db2 12 with new function activated

CREATE FUNCTION DYNSQLFUNC()
RETURNS INTEGER
VERSION V1 DETERMINISTIC NO EXTERNAL ACTION
PARAMETER CCSID UNICODE

BEGIN
DECLARE VARCOUNT INTEGER;
DECLARE LV_STMT_STR VARCHAR(256);
DECLARE S1 STATEMENT;
DECLARE C1 CURSOR FOR S1;
SET LV_STMT_STR = ‘SELECT COUNT(*) FROM

SYSIBM.SYSTABLES’;
PREPARE S1 FROM LV_STMT_STR;
OPEN C1;
FETCH C1 INTO VARCOUNT;
CLOSE C1;
RETURN VARCOUNT;

END!

Constant Support in SQL Routines and Triggers

• Prior to Db2 12, inside of SQL PL, users could declare SQL variables with different data types but
users were not allowed to declare any of those variables to be constant

• Db2 12 now supports the declaration of user-defined constants in SQL Routines and Triggers
– Variables with an array type can not be declared as constant
– Constant SQL variables are read-only

• SQLCODE/SQLSTATE can not be declared as constant SQL variables

69

…
DECLARE VAR2 INTEGER;
DECLARE cMAXVAL INTEGER CONSTANT 2000;
SELECT 1 INTO VAR2 FROM TEST WHERE VAR1 >
cMAXVAL;
IF VAR1 > cMAXVAL THEN

…
ELSE

…
END IF;

CREATE_WRAPPED Stored Procedure
• Invokes the WRAP built-in function and executes the DDL.

CALL CREATE_WRAPPED('create procedure jason.P1 (inout p1
char(1)) modifies sql data language sql begin SELECT ''A''
INTO P1 FROM SYSIBM.SYSDUMMY1; end');

Native SQL PL Procedure as input to
CREATE_WRAPPED stored

procedure

NAME WRAPPED TEXT
P1 Y CREATE PROCEDURE JASON.P1 (inout p1

char(1)) WRAPPED DSN12100
ablGWmdiWmtuTmdyTmtKTmteUmdCUmdqUotKWodm1i
daWmdaWmdaWntvUzcaGicaGRQ64UO_7K5gVYol9Rio
jJ20Fl3zVc0lG3muMefim5vS3A4W1s6Wvf8DkcBJVz
PpYG1gLxh_cUCWa

SYSIBM.SYSPACKSTMT

SYSIBM.SYSROUTINES

SYSIBM.SYSROUTINES
NAME STATEMENT
P1 SELECT ‘A’ INTO :H:H FROM SYSIBM.SYSDUMMY1

New Built-In Functions

New Built-In Functions

• Aggregate Functions
• MEDIAN
• PERCENTILE_CONT
• PERCENTILE_DISC

• Scalar Functions
• GENERATE_UNIQUE_BINARY
• VARCHAR_BIT_FORMAT
• HASH_CRC32
• HASH_MD5
• HASH_SHA1
• HASH_SHA256

LISTAGG (FL 501) Overview

• The LISTAGG function is used to aggregate a set of string values into a single
string

• The values are appended based on the order specified by the WITHIN GROUP
clause

• The values may be separated by a separator

LISTAGG - ALL

WORKDEPT JOB_TITLES

A00 CLERK , CLERK , PRES , SALESREP, SALESREP

B01 MANAGER

C01 ANALYST , ANALYST , ANALYST , MANAGER

D11 DESIGNER, DESIGNER, DESIGNER, DESIGNER, DESIGNER, DESIGNER, DESIGNER,
DESIGNER, DESIGNER, DESIGNER, MANAGER

D21 CLERK , CLERK , CLERK , CLERK , CLERK , CLERK , MANAGER

E01 MANAGER

E11 MANAGER , OPERATOR, OPERATOR, OPERATOR, OPERATOR, OPERATOR, OPERATOR

E21 FIELDREP, FIELDREP, FIELDREP, FIELDREP, FIELDREP, MANAGER

Output job titles, in ascending order, under the same
department according to their job title
SELECT WORKDEPT,

LISTAGG(ALL JOB,', ') WITHIN GROUP (ORDER BY JOB) AS JOB_TITLES FROM DSN8C10.EMP
GROUP BY WORKDEPT!

LISTAGG - DISTINCT
Output job titles, in ascending order, under the same department according
to their job title, eliminating any duplicate titles

SELECT WORKDEPT,

LISTAGG(DISTINCT JOB,', ') WITHIN GROUP (ORDER BY JOB) AS JOB_TITLES
FROM DSN8C10.EMP

WORKDEPT JOB_TITLES

A00 CLERK , PRES , SALESREP

B01 MANAGER

C01 ANALYST , MANAGER

D11 DESIGNER, MANAGER

D21 CLERK , MANAGER

E01 MANAGER

E11 MANAGER , OPERATOR,

E21 FIELDREP, MANAGER

Summary

76

Summary

• Db2 11 and Db2 12 build on SQL function provided in previous
releases with the following focus areas

• Native SQL Routines
• Db2 11 Added The Array Datatype
• Db2 12 adds SQL PL Triggers
• Constants

• Analytic processing
• Db2 12 Added additional OLAP Functions

• SQL Family and Vendor compatibility extensions
• Extensions needed to run popular applications requested by customers and vendors

• Temporal and Archive Tables enable modern applications
• Continue to enhance use cases and remove restrictions

77

78

