
Deploying and managing integrations
across private and third-party clouds with
App Connect Enterprise Containers

Aaron Gashi

IBM

November 2019

Session JG

https://twitter.com/gseukc
https://www.linkedin.com/groups/1741877
https://www.facebook.com/pages/Guide-Share-Europe-UK-Region/174907039241415

• IBM Cloud Private is a private cloud platform for developing and running workloads locally. Built on
top of Kubernetes and Helm technologies as well as providing a catalog, private image repository,
management console and monitoring framework.

• Docker, Kubernetes and Helm work together to provide a platform for managing, packaging and
orchestrating containerised workloads. For App Connect Enterprise this enables the packaging of an
integration server into a standardised unit for deployment that can be promoted through a
development pipeline then deployed, managed and scaled.

• The ACE Certified Container provides:
• Dashboard: Management of BAR files and integration servers, no need to wait for integration

server to start before deploying a BAR file
• Monitoring: Message flow statistics and JVM statistics data provided to the IBM Cloud Private

monitoring dashboard
• Logging: Integration with the IBM Cloud Private ELK stack
• Configuration: Greater control of the integration server through configuration

The 1 chart summary of ACE Certified Containers

Worker Node

App Connect Enterprise
Runtime

3

Fixed
Configuration

Pet

Container

Code

Virtual Machine

App Connect Enterprise
Runtime

Environment
Configuration

Code

Fixed
Configuration

Cattle

Environment
Configuration

Created new for each

new code version

Remains same for each

new code version

Host – including

Kernel

Policies

Applications
Services

REST APIs

IntegrationServer flags
server.config.yaml

IBM Confidential

Integration Nodes vs. Unzip and go

Process
Supervision

Admin Web UI

Physical/
Virtual

Machine

Node

Flow PolicyPublic
Cfg Store

BAR Flow Policy

Public
Cfg Store Flow

Container

BAR

Policy

Flow Policy

HTTP
Listener

Admin Web UI

Nodes and their integration servers are long-lived.
Require dynamic operational capability using commands.

Containers can be re-started.
Configuration based on settings in a yaml file.

UNZIP and GO !

On premises

Clouds, Connections and Administrative Control

Private

Cloud

SoR

SoR

SoR

N

o

d

e

Queue Manager

QMgr

QMgr

QMgr

IBM Cloud

Control Plane

Control Plane

A.N.Other Cloud

API

Gateway

Kubernetes
Helm
charts

Worker Node

Release
Image repository

Worker Node Worker Node

Monitoring

Log
aggregator

Deployment

Pod

Service

Template Image repository

IIB v10.0.0.12

ACEv11.0.0.1

ACEv11.0.0.2

Image Build

Code repositories

Authoring
Product specific component

Product specific artefact

ServiceNode

ServiceNode

ServiceNode
fv1

Service
Node

f

Service
IIB10

Servic
eMQ

Servic
eMQ

Service

Servic
eMQ

Kafka

Service
ACE

A Tangible Example

ACEv11.0.0.3

ACEv11.0.0.4

BAR FlowPolicy

Server.conf.yaml

aService

ACEv11.0.0.2

PolicyFlow

Server.conf.yaml

Catalog: Helm Charts Catalog: Images

ibm-ace-server

ibm-ace-dashboard

ibm-ace

ibm-ace-dashboard

ibm-ace-server

ibm-ace-content-server

ibm-ace-icp-configurator

Secrets

ELK

Prometheus

Kibana (Logging)

Grafana (Monitoring)

D
ep

lo
ym

en
t

Pa
th

 1

Install using Helm chart
ibm-ace-dashboard

ACE Controller UI

Control Plane

UI Backend

Content Server

Storage

Install using Helm chart ibm-ace-server

ACE Server (ibm-ace-server)

D
ep

lo
ym

en
t

Pa
th

 2

Install using Helm chart ibm-ace
CI/CD Pipeline

Derived from
ACE Server (ibm-ace-server)

In
g
re

s
s
 C

o
n
tr

o
lle

r

Client Application

NodePort

• SIZE: The size of the installation is dramatically reduced, and thereby the size of the Docker image. This

reduces build times due to the reduced image creation time, and deployment times as a smaller image is

transported out to the environments.

• MEMORY: The running container-based on the image uses significantly less memory usage as it has no

processes associated with the MQ server. Cloud infrastructure used for container-based deployment is

often charged based on memory rather than CPU so this can have a significant impact on running cost.

• START-UP: Start-up times of the containers are much faster as only one operating system process is

started – that of the integration engine. This improves agility by reducing test cycle time, and improves

resilience and elastic scalability by being able to introduce new runtimes into a cluster more rapidly.

• VOLUMES: MQ holds its message data on persistent volumes, and specific servers need access to

specific volumes within the MQ topology. If IBM App Connect Enterprise has a local MQ server, it

becomes locked into this topology. This makes it more complex to elastically add new servers to handle

demand dynamically. For those using Kubernetes it may result in a StatefulSet rather than the more

straightforward ReplicaSet. Once again, this makes it harder to take advantage of the cost benefits of

elastic cloud infrastructure.

Do you need a local queue manager?
The Benefits of servers that don’t need a local queue manager

IBM Certified Containers and IBM Cloud Paks

TRY!
THEN BUY!

Nov 2018
• ACEv11 Docker images (Ubuntu) and

Helm charts for use on IBM Cloud
Private 3.1

Dec 2018
• Instructions for building your own

ACEv11 for IBM Cloud Private on Red
Hat OpenShift

• Instructions for building your own
ACEv11 on Red Hat OpenShift

April 2019
• ACEv11 Docker images (RHEL)

Part ID: CC0FNML. Red Hat Certified
and available in the Red Hat Container
Catalog

Jan 2019
• Docker images updated to include

ACEv11.0.0.3

May 2019
• Docker images updated to include

ACEv11.0.0.4 and support IBM Cloud
Private 3.1.2

ACE and Red Hat OpenShift

https://access.redhat.com/containers/#/product/b9b058da22f02c21

July 2019
• Docker images updated to include

ACEv11.0.0.5 and support IBM Cloud
Private 3.2.0.1906

• Docker images now based on Red Hat
Universal Base Image (UBI)

https://access.redhat.com/containers/#/product/b9b058da22f02c21

• Developer Helm Charts:
• https://github.ibm.com/IBMPrivateCloud/charts/tree/master/stable/ibm-ace-

dashboard-dev
• https://github.ibm.com/IBMPrivateCloud/charts/tree/master/stable/ibm-ace-

server-dev

• Server Images source
• https://github.com/ot4i/ace-docker

• Images on Dockerhub (Developer Edition)
• ibmcom/ace
• ibmcom/ace-mq
• ibmcom/ace-mqclient
• ibmcom/ace-dashboard
• ibmcom/ace-content-server
• ibmcom/ace-icp-configurator
• Ibmcom/ace-designer-flows

App Connect Enterprise Certified Containers links:

https://github.ibm.com/IBMPrivateCloud/charts/tree/master/stable/ibm-ace-dashboard-dev
https://github.ibm.com/IBMPrivateCloud/charts/tree/master/stable/ibm-ace-server-dev
https://github.com/ot4i/ace-docker

CI/CD Pipelines and ACE v11

https://twitter.com/gseukc
https://www.linkedin.com/groups/1741877
https://www.facebook.com/pages/Guide-Share-Europe-UK-Region/174907039241415

Pipeline overview

Build Package UAT
PreProd
Publish

…

• Pipelines of one sort or another exist in most IT shops
• Some more automated than others!

• Manual trigger or automatic

• Inputs could be source or whole BAR files

• Destination: static integration node? HA node? Container?

CI and CD

• Continuous Integration
• Automatically build and test whenever new code is available

• Tests show whether or not the code has broken anything

• Continuous Delivery
• Pushing to production (delivering to customers) from a continuous stream

• No waiting for fixed release cycles

• Once code is decided to be ready, it is pushed to production

• Continuous Deployment (extension)
• Automated production pushes – no explicit decision by humans

• Only a failed test stops the code going live

Integration

Evolution to agile integration architecture – detail view

Centralized
ESB

Fine-grained
integration
deployment

Decentralized
integration
ownership

Containerization Application autonomy

API

API GatewayAPI Gateway

API Gateway API Gateway

Integration

API API

APIAPI
API

API

API

En
ga

ge
m

en
t

ap
p

lic
at

io
n

s
Sy

st
em

s
o

f
re

co
rd

Ev
en

t
st

re
am

Jenkins, Docker, and Kubernetes
• Jenkins for builds

• Docker for application isolation
and filesystem layering

• Kubernetes for deploying and
managing the results.

ACE v11 Docker layers

• Install in one layer, based on underlying operating system

• App in small layer at the end, minimizing per-application overhead
• Huge saving when multiple applications deployed

• Install is shared.

• Credentials usually added in at runtime

• Test new fixpacks by changing the FROM line

ACE v11 in a pipeline today

• Pipeline structures often (usually) involve multiple products
• Might need to create MQ queues, database definitions, etc

• mqsicreatebar, mqsipackagebar, mqsibar

• Policy file creation

Demo ACE v11 pipeline using Jenkins

AKS and Windows Containers

• The “unzip and go” architecture does not restrict ACE v11 to Linux
• Underlying implementation is platform-neutral

• Azure offers Windows Container support, and ACE v11 runs in
Windows Containers (Server 2016 and 2019)
• .Net nodes allow CLR support

• Windows Container support not limited to AKS

• IBM MQ does not yet support Window Containers

ACE v11 versus IIB v10

• ACE v11 allows policy, unzip and go, etc

• IIB v10 requires the use of integration nodes
• Commands needed for some admin operations

• More processes

• Slower startup

• IIBoC used IIB v10 codebase in cloud containers, but not in a way that
was supported for customers
• Complicated and fragile

CI/CD Pipelines with testing

Build/UT
Integration

Test
Component

Test
PreProd
Package

PreProd
Deploy and

Test

Push to next
stage

• Automated testing rather than manual
• Repeatable

• Note that the final deploy target of this pipeline could be integration
nodes or containers
• Testing in the early stages unrelated to the final target.

ACE v11 pipeline with more testing (future)

• Unit test and component test used internally already

• TDD before check-in of flows, maps, etc

Lightweight integration engine?

• ACE v11 disk footprint
• 1.15GB with Ubuntu 18.04 but without the toolkit

• ACE v11 runtime memory consumption
• Server itself fits in all but the smallest containers on public clouds

• Applications may require much more

• Servers run threads and maintain in-memory configuration for all
available applications and flows

Componentized ACE v11 runtime
• Not all solutions require the complete

ACE v11 runtime package.
• Web UI not always needed in containers

• Adapters not always used

• JRE needed, but not always JDK

• …

• Create a container image with only the
required components.
• Saves space and memory consumption

• Work in progress!

Installed Product

SAP

FTE

ODBC

WXS

Server Core

WebUI

XSLT

ACE v11 using Alpine base image

• Alpine docker base image designed for lightweight containers
• Much smaller than Ubuntu or RedHat UBI

• Does not use GNU C or C++ runtime libraries due to size constraints

• Used by IBM Java and OpenJDK for base images

• Lab will demonstrate size advantage when used in conjunction with
customised runtime components.

• Fits in the free tier of IBM Container Registry (512MB quota)

Please submit your session feedback!

• Do it online at http://conferences.gse.org.uk/2019/feedback/jg

• This session is JG

http://conferences.gse.org.uk/2019/feedback/nn

