
Achieving scaling and high
availability with IBM MQ for
z/OS queue sharing groups
Gwydion Tudur

IBM MQ Development

November 2019

Session JN

https://twitter.com/gseukc
https://www.linkedin.com/groups/1741877
https://www.facebook.com/pages/Guide-Share-Europe-UK-Region/174907039241415

2

• Why you need scalability and resilience

• Queue sharing groups

• Achieving consistent configuration

• Connectivity

• Application considerations

• Resilience

• Putting it all together

• A comparison with uniform clusters

Agenda

© 2019 IBM Corporation

App

© 2019 IBM Corporation

App App App App App App

decoupled

Queue Manager Queue Manager Queue Manager Queue Manager

Queue Manager Queue Manager Queue Manager Queue Manager

Queue Manager Queue Manager Queue Manager Queue Manager

Queue Manager Queue Manager Queue Manager Queue Manager

Scaling

Single Multiple

Queue Manager
Queue Manager

Queue Manager Queue Manager Queue Manager Queue Manager

Queue Manager Queue Manager Queue Manager Queue Manager

x1x4 x1x2x3x4x5x6x7x8xn

Fault Toleration

Queue Manager

Single

Queue Manager Queue Manager Queue Manager Queue Manager

Multiple

100%

0%

100%

0%

availabilityavailability

Single vs. Multiple
Single

o Simple
o Invisible to applications
o Limited by maximum system size
o Liable to hit internal limits
o Not all aspects scale linearly
o Restart times can grow
o Every outage is high impact

Multiple

o Unlimited by system size
o All aspects scale linearly
o More suited to cloud scaling
o Reduced restart times
o Enables rolling upgrades
o Tolerate partial failures
o Potentially more complicated
o Needs to, and should be, planned for

Queue Manager Queue Manager Queue Manager Queue Manager

Queue Manager

Queue Manager Queue Manager Queue Manager

It’s not just the queue managers…
Client Client Client

Step 1
Horizontally scale the application into multiple instances, all
performing the same role
A queue manager works better when there are multiple
applications working in parallel Queue Manager

Step 2
Horizontally scale the queue managers
Create multiple queue managers with the ‘same’ configuration
Distribute the application instances across the queue managers

Client Client Client Client Client Client

Queue Manager Queue Manager Queue Manager

Queue sharing groups

Private queues – a recap

Private queues are defined to individual queue
managers

On z/OS messages are held in memory in buffer pools
and where necessary stored on disk in a page set

Persistent messages are logged

Queue Manager

Page set

Logs
Buffer
pool

Private queues – a recap

Messages can only be accessed by the owning
queue manager

If the queue manager fails messages are lost if non-
persistent, or unavailable until the queue manager
restarts if persistent

On distributed MQ all queues are implicitly private…

Queue Manager

Page set

Logs
Buffer
pool

Shared queues

Shared queues are defined to a set of related queue
managers – a queue sharing group

Messages are stored in a coupling facility, in a
memory structure called a list structure

As before, persistent messages are logged

The messages can be accessed by any queue
manager in the group

Queue Manager

Queue Manager

Queue Manager Queue Manager

Coupling Facility

Shared queues

If an individual queue manager in the group isn’t
running, messages in the shared queue are still
available to apps via the remaining queue
managers in the group

Apps connect to the group rather than an individual
queue manager

Queue managers in a queue sharing group can also
have private queues Queue Manager

Coupling Facility

App App App

App App

Queue Manager

Queue Manager Queue Manager

Shared queues - benefits

Resilient: existing messages are available to apps,
and new messages can be put, for as long as one
queue manager is available

Scalable: throughput can push past the capacity of
a single queue manager

Simple: no need to balance messages, and
applications, across a set of private queues, or
worry about marooned messages Queue Manager

Coupling Facility

App App App

App App

Queue Manager

Queue Manager Queue Manager

Achieving consistent configuration

15

Consistent configuration

A queue sharing group environment should consist
of a set of identically configured queue managers

Queue ManagerQueue ManagerQueue Manager

Consistent configuration

A queue sharing group environment should consist
of a set of identically configured queue managers

Luckily this is easy to achieve with queue sharing
groups

Coupling Facility

Queue Manager

Queue ManagerQueue Manager

Consistent configuration - steps

When defining your logs, page sets, BSDS, etc. use
the same set of JCL for each queue manager,
ensuring that data set names contain the name of
both the queue sharing group and the queue
manager

The only thing you should be changing in the JCL
when moving to another queue manager is the
queue manager name

DEFINE CLUSTER
(NAME(MQM.QSG1.QM1.PSID00)
RECORDS(1000 500)
LINEAR SHAREOPTIONS(2 3))

DATA
(NAME(MQM.QSG1.QM1.PSID00.DATA))

Consistent configuration - steps

Keep the JCL in version control, it makes it easier to
find, back up and track changes

Having the queue sharing group name in the data
set name makes it easy to apply consistent policies
for zHyperWrite, compression, and data set
encryption across the whole queue sharing group

DEFINE CLUSTER
(NAME(MQM.QSG1.QM1.PSID00)
RECORDS(1000 500)
LINEAR SHAREOPTIONS(2 3))

DATA
(NAME(MQM.QSG1.QM1.PSID00.DATA))

ARVP

Consistent configuration - steps

Use a common source for the various CSQ6*
macros when building the system parameters for all
your queue managers

Keep the source in version control

Watch ARCPFX1 and ARCPFX2, in CSQ6ARVP,
which need to be different for each queue manager

SYSP LOGP

ARVP USGP

Queue Manager Queue ManagerQueue Manager

Consistent configuration - steps

Use a common source for the CSQINP* data sets
you use to configure your queue managers

Keep the source in version control

Use shared queues instead of private queues

DEF QL(APP1.Q) QSGDISP(SHARED)
CFSTRUCT(APPSTRUC1)

APP1.Q

Consistent configuration - steps

Define other object types to the queue sharing
group rather than to individual queue managers

This is done using the QSGDISP(GROUP) parameter

The definition of the object is then held in a shared
repository

Each queue manager caches a local definition

Coupling Facility

DEF TOPIC(FRUIT) QSGDISP(GROUP)
TOPICSTR(‘FRUIT’)

Shared Repository

Fruit

Queue Manager

Queue ManagerQueue Manager

Consistent configuration - steps

Define other object types to the queue sharing
group rather than to individual queue managers

This is done using the QSGDISP(GROUP) parameter

The definition of the object is then held in a shared
repository

Each queue manager caches a local definition

NB: Can’t do this with DEFINE SUB so use
CMDSCOPE(*) instead

Coupling Facility

DEF TOPIC(FRUIT) QSGDISP(GROUP)
TOPICSTR(‘FRUIT’)

Shared Repository

Fruit

Queue Manager

Queue ManagerQueue Manager

Fruit

Fruit

Fruit

Consistent configuration - steps

When configuring security profiles use the queue
sharing group name in RACF profiles instead of the
name of the individual queue manager

RDEFINE MQQUEUE QSG1.APP1.Q

Connectivity

25

Connectivity

Apps should never specify a specific queue
manager name when connecting to MQ

Doing so requires a recompile if the queue manager
changes, making your environment brittle, and
making it hard to adopt technologies such as queue
sharing groups

MQ2

MQ1 MQ3

Coupling Facility

App App App

MQCONN(MQ1) MQCONN(MQ2) MQCONN(MQ3)

LPAR

Local apps

Apps should connect to the queue sharing group
rather than to a specific queue manager

For apps which make cross-memory connections
you should ensure that there are at least two queue
managers in the queue sharing group available on
each LPAR, providing availability should one of the
queue managers fail

This capability is available for apps running in
batch, CICS and JEE environments

Coupling Facility

Shared repository

App App

Queue Manager

Queue ManagerQueue Manager

Local apps
Default queue manager

The following options are available to prevent
hardcoding of queue manager names for local apps

Apps running in batch environments can connect to
the default queue manager. The default queue
manager can be specified for each app using the
CSQBDEF macro

JMS apps can hold connection factory definitions in
JNDI allowing the definition to be changed without
changing the app

LPAR

Coupling Facility

Shared repository

App App

Queue Manager

Queue ManagerQueue Manager

MQCONN(“”)

CSQBDEFCSQBDEF

Local apps
Default queue manager

In CICS the MQCONN resource holds the name of
the queue manager or queue sharing group to
connect to so apps don’t need to specify it anyway

In IMS the CSQQDEFV module allows a default
queue manager to be specified, but this can’t be a
queue sharing group

LPAR

Coupling Facility

Shared repository

App App

Queue Manager

Queue ManagerQueue Manager

MQCONN(“”)

CSQBDEFCSQBDEF

Remote apps

Apps should connect to the queue sharing group
rather than a specific queue manager

For apps which connect to MQ over a network
something is needed to spread connections across
the available queue managers

Several approaches are available:
• Sysplex Distributor
• A workload balancer / IP sprayer
• CCDTs

App App App App App

?

Coupling Facility

Queue Manager

Queue ManagerQueue Manager

Sysplex Distributor

Sysplex Distributor allows each queue manager in
the queue sharing group to listen on the same IP
address and port

If multiple queue managers exist on the same LPAR
then they can use a shared port

Sysplex Distributor spreads connections across the
queue managers based on configured workload
management policies

Coupling Facility

App App App App App

Sysplex Distributor

Queue Manager Queue Manager

Shared port

LPAR

Queue Manager Queue Manager

Shared port

LPAR

Sysplex Distributor

Sysplex Distributor relies on a “routing” network
stack on a single LPAR distributing the connections.
If the “routing” stack fails, the responsibility is
moved to another LPAR

This is transparent to existing connections!

Coupling Facility

App App App App App

Sysplex Distributor

Queue Manager Queue Manager

Shared port

LPAR

Queue Manager Queue Manager

Shared port

LPAR

CCDT

CCDTs contain configuration information which is
used to define a client channel

MQ clients use this information to connect to a
single queue manager, or a group of queue
managers

App App App

{
“channel”:[
{
“name”:”TO.QSG1”,
”queueManager”:”QSG1”
},
{
“name”:”TO.QSG1”,
”queueManager”:”QSG1”
},

]
}

MQCONN(*QSG1)

Queue Manager
Coupling Facility

Queue Manager Queue Manager

Shared port

LPAR

Queue Manager Queue Manager

Shared port

LPAR

CCDT

CCDTs also provide the ability to randomize where
connections are made

This provides the ability to spread work over a
queue sharing group

In MQ 9.1.2 this was made easier with JSON
format CCDTs as each queue manager can be
configured with the same server-connection
channel definition

App App App

{
“channel”:[
{
“name”:”TO.QSG1”,
”queueManager”:”QSG1”
},
{
“name”:”TO.QSG1”,
”queueManager”:”QSG1”
},

]
}

MQCONN(*QSG1)

Queue Manager
Coupling Facility

Queue Manager Queue Manager

Shared port

LPAR

Queue Manager Queue Manager

Shared port

LPAR

Shared channels

Connectivity concerns aren’t just limited to clients
connecting into a queue sharing group

You have to consider queue manager to queue
manager channels too

Queue Manager Queue Manager

Coupling Facility

Shared
Repository

Sysplex Distributor

Queue Manager Queue Manager

Coupling Facility

Shared
Repository

Sysplex Distributor

Shared channels

Queue sharing groups support the idea of shared
sender and receiver (etc.) channels

These store channel state information at the queue
sharing group level rather than in individual queue
managers

If a queue manager running a shared channel fails,
the channel can automatically be restarted on a
remaining queue manager in the group and carry on
running where it left off

Queue Manager Queue Manager

Coupling Facility

Shared
Repository

Sysplex Distributor

Queue Manager Queue Manager

Coupling Facility

Shared
Repository

Sysplex Distributor

Application considerations

37

Application considerations

The MQ APIs are generally the same regardless of
whether you are connected to a single queue
manager, or a queue sharing group

However moving an app to using a queue sharing
group is typically not an isolated project, it is often
part of a wider effort to improve a system’s
resilience that includes other subsystems such as
CICS, Db2, IMS etc.

The main challenges are often affinities…

App

Affinities

An affinity is a coupling between two otherwise
separate actions

For example if an app uses the information in one
message to generate some state which is stored in
local memory, and then updates that state using
the information in a second message there is an
affinity between the two messages

App

Queue Manager

20

10

x = 0x = 20

Affinities

An affinity is a coupling between two otherwise
separate actions

For example if an app uses the information in one
message to generate some state which is stored in
local memory, and then updates that state using
the information in a second message there is an
affinity between the two messages

App

Queue Manager

20

10

x = 20

Affinities

App

Queue Manager

20 10

x = 30

An affinity is a coupling between two otherwise
separate actions

For example if an app uses the information in one
message to generate some state which is stored in
local memory, and then updates that state using
the information in a second message there is an
affinity between the two messages

Affinities

Affinities make it hard to use technologies like
shared queues as well as parallel sysplex in general

Affinities also cause challenges when using MQ
clusters too, so it’s a wider challenge!

App

Queue Manager

20 10

x = 30

Affinities

In the previous example, what if the first and
second messages were got by different app
instances on different LPARs?

While this affinity can easily be solved, for example
by putting the state in the database, its better to try
and avoid affinities as much as possible

Where they are necessary assume that at some
point in the future your app is going to need to run
multiple (collaborating) instances across multiple
LPARs, and design your app with that in mind

App

Queue Manager

x = 20

20

App
10

x = 10

Enforcing serialized processing
Ideally it would always be possible to have multiple
apps processing the messages from a given queue
as that gives the greatest ability to scale

However sometimes strict message ordering needs
to be maintained

A simple way of achieving this is to define the
queue with NOSHARE, or using the
MQOO_INPUT_EXCLUSIVE option

However this doesn’t guarantee strict message
ordering when getting messages under synch-point
as the exclusivity is only available until the app
closes the queue

It also doesn’t help if messages on the queue are
partitioned, perhaps by correlation id, or if multiple
queues are being used

App

Queue Manager

App

NOSHARE

MQRC_OBJECT_IN_USE

Enforcing serialized
processing
An alternative approach is to use connection tags

Each app type that needs serialization has its own
connection tag (an arbitrary byte string)

When the app connects in it passes a flag indicating
how it wants to be serialized:

MQCNO_SERIALIZE_CONN_TAG_QSG tag can’t be
in use at the same time anywhere in the queue
sharing group

MQCNO_RESTRICT_CONN_TAG_QSG tag can only
be used on different connections if each connection
comes from same address space

If the original app instance fails, the tag remains in
place until any associated units-of-work are
resolved, preserving message order

App App

CONNTAG=APP1

App App

CONNTAG=APP2

Coupling Facility

Queue Manager

Queue ManagerQueue Manager

Resilience

48

Resilient/Reliable Failover Capable Fault Tolerant Continuous Availability

Data
High

Availability

• Shared Queues – Queue managers
are connected via a Coupling Facility.
Application requests for a service are
held in the CF and available to all
connected queue managers. If an
individual queue manager is unavailable
for any reason, new and existing
messages are available to the rest of the
queue managers

Service High
Availability

• Clustering - Application requests for a
service are spread among a cluster of
queue managers. If a queue manager
fails, new requests are routed to
surviving queue managers allowing the
service to continue to be available,
eliminating SPoFs for message driven
services. Existing messages on the failed
queue manager aren't available until it is
back online

• Clustering - Application requests for a
service are spread among a cluster of
queue managers. If a queue manager
fails, new requests are routed to
surviving queue managers allowing the
service to continue to be available,
eliminating SPoFs for message driven
services. Existing messages on the failed
queue manager aren't available until it is
back online

Enhanced
Data

Recovery

• Data replication – MQ active log
datasets can be mirrored to a
secondary storage subsystem using
data replication. zHyperwrite support
improves performance

• Data replication – MQ active log datasets
can be mirrored to a secondary storage
subsystem using data replication.
zHyperwrite support improves
performance

• Data replication – MQ active log
datasets can be mirrored to a secondary
storage subsystem using data
replication. zHyperwrite support
improves performance

Data
Recovery

• Logging – MQ records all significant
changes to persistent data in a
recovery log. Dual logging offers
protection against data loss.

• Archiving – Logs automatically
archived to secondary storage (tape or
DASD)

• Logging – MQ records all significant
changes to persistent data in a
recovery log. Dual logging offers
protection against data loss.

• Archiving – Logs automatically
archived to secondary storage (tape or
DASD)

• Logging – MQ records all significant
changes to persistent data in a recovery
log. Dual logging offers protection
against data loss.

• Archiving – Logs automatically archived
to secondary storage (tape or DASD)

• Logging – MQ records all significant
changes to persistent data in a recovery
log. Dual logging offers protection
against data loss.

• Archiving – Logs automatically archived
to secondary storage (tape or DASD)

High Risk and Impact Medium Risk and Impact Low Risk and Impact Minimal Risk and Impact

IBM MQ for z/OS provides capabilities to ensure your connectivity never lets you down

Coupling Facility

Queue Manager

Queue ManagerQueue Manager

Resilience to queue manager failure

Persistent and non-persistent messages on shared
queues are available via other queue managers in
the group if individual queue managers fail

App

If client apps are using automatic client reconnect
then the failure can be entirely transparent to them

Alternatively, applications can detect the
connection error and reconnect to the group and
carry on processing

Resilience to queue manager failure

Persistent and non-persistent messages on shared
queues are available via other queue managers in
the group if individual queue managers fail

Coupling Facility

If client apps are using automatic client reconnect
then the failure can be entirely transparent to them

Alternatively, applications can detect the
connection error and reconnect to the group and
carry on processing

Note that non-persistent messages are not lost
even all queue managers in the group fail!

App AppApp

Coupling Facility

Queue Manager

Queue ManagerQueue Manager

Transaction recovery

When apps fail, the queue manager and app
runtime environment cooperate to ensure that
inflight transactions are either committed, or rolled
back

This happens regardless of whether shared queues
are being used or not

Rolling back the transaction, if necessary, allows
other instances of the app to process the messages

Queue Manager Queue Manager

Coupling Facility

App

?

?

Peer recovery

Queue Manager Queue Manager

Coupling Facility

App

This is achieved using peer recovery – other queue
managers in the group use information in the
coupling facility and the failed queue manager’s
logs to rollback, or commit messages as
appropriate allowing the app to carry on processing

If a queue manager fails while an app was using
shared queues the aim is for the app to be able to
carry on processing as quickly as possible

?

?

Group UR

In some cases the app runtime environment (CICS
or WAS) own the transaction state and must
cooperate with MQ to correctly resolve the
transaction

Traditionally the queue manager that the app was
interacting with owned this information, which
meant it needed to be restarted to recover the
transaction

This can delay recovery

Queue Manager Queue Manager

Coupling Facility

?

?

WAS

App

Group UR

Group units of recovery can be enabled on the
queue managers in the group

This allows transaction state to be owned by the
queue sharing group, instead of the individual
queue manager

In the event of a queue manager failure the app
runtime environment can then connect to another
queue manager in the group and resolve the
transaction

Allowing the app to carry on processing

Queue Manager Queue Manager

Coupling Facility

?

?

WAS

App

ALTER QMGR GROUPUR(ENABLED)

Resilience to structure failure

The structures used to store shared queues are
highly resilient to failure as they run in a coupling
facility, and coupling facilities don’t contain any
application code

It is possible to increase this failure isolation by
using dedicated hardware for coupling facilities

Queue Manager Queue Manager

Coupling FacilityIf a structure does fail then any non-persistent
messages stored in the structure are lost

Persistent messages can be restored from a backup
in a queue manager’s logs using the RECOVER
CFSTRUCT command, this can be done manually or
automatically by MQ

RECOVER CFSTRUCT

Resilience to coupling facility failure

The network links between queue managers and
coupling facilities can fail, or indeed the coupling
facility itself can fail

A total failure of network links is treated the same
as a failure of a coupling facility by MQ

If this situation is detected then MQ will attempt to
reconnect to the coupling facility which might result
in an alternate coupling facility being used

As before, persistent messages can be restored
from a backup in a queue manager’s logs using the
RECOVER CFSTRUCT command, this can be done
manually or automatically by MQ

Queue Manager Queue Manager

Coupling Facility

RECOVER CFSTRUCT

Coupling Facility

Coupling Facility

Resilience to coupling facility failure

The network links between queue managers and
coupling facilities can fail, or indeed the coupling
facility itself can fail

If some network links fail, and only a subset of
queue managers loose access to the coupling
facility the queue managers will request that the
contents of the shared queues are copied to a
coupling facility to which all queue managers can
access

In this case non-persistent and persistent
messages are preserved, and apps just experience
a brief delay while the messages are copied

Queue Manager Queue Manager

Coupling Facility

Coupling Facility

Coupling Facility

Resilience to coupling facility failure -
duplexing

z/OS also provide coupling facility duplexing where
each write operation to a primary coupling facility is
synchronously replicated to a backup

If the primary coupling facility fails, the backup
transparently becomes the primary without MQ, or
apps, being aware

Queue Manager Queue Manager

Coupling Facility

Coupling Facility

Coupling Facility

Resilience to coupling facility failure -
duplexing

z/OS also provide coupling facility duplexing where
each write operation to a primary coupling facility is
synchronously replicated to a backup

If the primary coupling facility fails, the backup
transparently becomes the primary without MQ, or
apps, being aware

While providing an extremely high level of resilience
this approach needs to be balanced against the
higher CPU cost and extra latency it introduces on
every single write operation

In many cases the automatic recovery, and
connectivity loss tolerance, provided by MQ is
sufficient

Queue Manager Queue Manager

Coupling Facility

Coupling Facility

Coupling Facility

Resilience to application failure

Queues are designed for temporary storage of data
being exchanged between apps, allowing the apps
to be decoupled and scale independently

Queue Manager

App App

Resilience to application failure

Queues are designed for temporary storage of data
being exchanged between apps, allowing the apps
to be decoupled and scale independently

Queue Manager

App

Should a getting app fail the queue can act as a
buffer for messages sent by the putting app

However queue storage is finite and will eventually
fill up if the getting app isn’t started in time. This
can potentially lead, in the worst cases to a putting
app failure

Private queues can hold at most 64GB of message
data

Shared queues configured to offload data to SMDS
can hold much more data – many TBs, providing
extra time to resolve app outages, and a more
resilient solution

App

MQRC_STORAGE_MEDIUM_FULL

Putting it all together

App

Bringing it all together
• Design your apps so they have no, or minimal,

affinities

• Build a set of queue managers using a single
configuration template

• Create a queue sharing group and add the queue
managers to it

• Configure backup coupling facilities

• Define the necessary MQ objects to the queue sharing
group rather than individual queue managers, using
shared queues where necessary

• Ensure your queues and storage are sufficiently sized
for resilience in the case of app failure

• Use technology like Sysplex Distributor to provide a
resilient workload balancing layer

• Connect your apps

• Monitor your environment, including your apps, for
failure

App

Queue Manager

Queue Manager Queue Manager

Coupling Facility

Sysplex Distributor

Backup
Coupling Facility

App App

Remember that equivalent steps need to be
taken for the rest of your environment

A comparison with
uniform clusters

Uniform Cluster

App App

Uniform clusters – a recap

App App App App

a
m

q
s
c
lm

a
m

q
s
c
lm

a
m

q
s
c
lm

decoupled

Introduced in MQ 9.1.2, and enhanced in later CD
releases, uniform clusters make it easier to build
scalable, fault tolerant solutions on distributed MQ

Uniform clusters build on the existing capabilities of
MQ clustering and CCDTs to spread work over a set
of identically configured queue managers

One significant benefit of uniform clusters,
compared with regular clusters, is that MQ works to
ensure that apps are spread over the available
queue managers in the cluster to prevent messages
building up when there is no connected app to
consume them

Uniform clusters are not available on z/OS. Use
queue sharing groups instead.

A comparison

Capability Queue sharing
groups

Uniform
clusters

Ability to simply apply common
configuration across all queue
managers at startup

Yes The administrator is currently
responsible for this

Simple and efficient distribution
of apps across available queue
managers

Yes using Sysplex Distributor, a
CCDT or an IP sprayer

Yes using JSON CCDTs

Automatic app rebalancing to
ensure an even spread of apps
at all times

No. However with shared
queues apps can access all
messages regardless of where
they are connected

Yes

Ensuring all messages are
processed

Yes. With shared queues apps
can access all messages
regardless of where they are
connected to

Yes using AMQSCLM and
automatic app rebalancing

A comparison

Capability Queue sharing
groups

Uniform
clusters

High availability Yes, queue sharing groups
provide a range of capabilities to
provide best in class high
availability of messages
regardless of queue manager,
hardware or app failure

Yes, uniform clusters provide
high availability of the services
using clustered queues and can
be combined with technologies
such as RDQM for queue
manager high availability

Scaling up Queue managers can easily be
added to the queue sharing
group, Sysplex Distributor
ensures an even spread of new
workload, existing workload
remains where it is

Queue managers can easily be
added to the uniform cluster,
automatic app rebalancing
ensure an even spread of
workload, both new and existing

A comparison

Capability Queue sharing
groups

Uniform
clusters

Scaling down Queue managers can easily be
removed from the queue sharing
group. Shared queues removes
concerns regarding draining
queues and Sysplex Distributor
allows apps to reconnect to
remaining queue managers

Messages need to be drained
from existing queues before a
queue manager is removed from
the cluster. App rebalancing
ensures apps are spread over
remaining queue managers

Recommended app types Almost all apps can exploit
queue sharing groups, but care
needs to be taken regarding
affinities

Many apps can exploit uniform
clusters but care is required
when apps have affinities or use
message/correlation id to locate
specific reply messages

70

Summary

• Why you need scalability and resilience

• Queue sharing groups

• Achieving consistent configuration

• Connectivity

• Application considerations

• Resilience

• Putting it all together

• A comparison with uniform clusters

Please submit your session feedback!

• Do it online at http://conferences.gse.org.uk/2019/feedback/JN

• This session is JN

